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ABSTRACT  

This paper describes an empirical study of effort estimation in agile software development. Estimated effort and actual effort 
of a 46-iteration project are collected and analyzed. The results show that estimation in agile development is more accurate 
than that in traditional development even though agile developers still underestimate the effort. However, estimation accuracy 
is not improved over time as expected by agile communities.  
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INTRODUCTION 

It is long been realized that an important aspect of software development project is to know how much it will cost (DeMarco 
1982). In most cases the cost factor is labor (Shepperd et al. 1997). Estimating development effort is central to the planning, 
management and control of a software project. Underestimate will cause schedule pressure which results in higher defects 
rate and development cost (Abdel-Hamid 1990). On the other hand, overestimate will cause waste of resources and hurt the 
competitiveness in bidding a contract. 

Estimation is a challenge in every software project. Nearly 60% of all software projects are either failed or challenged with 
cost or time overruns reported by Standish Group CHAOS 2006 report. There are many factors that cause estimation error: 
lack of expertise and user inputs, frequent requirement changes, complexity, incomplete requirements, and users lack of 
understanding of requirements (DeMarco 1982; Genuchten 1991; Lederer et al. 1995; Phan et al. 1988; Subramanian et al. 
1995).  

Iterative and incremental development, which has been gradually adopted by many software development projects,  provides 
quick feedback and process transparency. A study compared project overruns of flexible and sequential development reveals 
that projects which employ a flexible development model experience less effort overruns than do those which employ a 
sequential model (Molokken-Ostvold et al. 2005). As a result, cost estimation accuracy has been largely improved over the 
years (Rubinstein 2007). The recent Standish Group CHAOS report reveals the large improvement in average overrun (43% 
in 2002, 189% in 1994).  However, effort prediction in agile software development is more challenging as there is usually no 
upfront requirement analysis phase (Ramesh et al. 2008).  The lack of detailed analysis and specification of requirements 
makes it more difficult to identify tasks in the beginning of a project. This very nature of agile development dictates that 
underestimation should be much higher than that in traditional approaches. In agile development,  agile planning 
continuously adjust the estimates throughout the development process (Cohn 2005), while traditional projects estimate at the 
planning stage.  The impact of agile planning on the accuracy of effort estimation remains unknown. The main purpose of 
this research is to investigate the effort estimation in agile software development. Especially, I try to answer the following 
research questions: 1) How accurate is effort estimation in agile approaches? 2) Is effort estimation in agile approach getting 
more accurate over time? 3) Are effort estimation of bugs and stories the same?  

To answer these questions I conducted a study in effort estimation in a large-size agile project. Estimated effort and actual 
effort of 46 two-week iterations were collected and analyzed. The remaining part of the paper is organized as follows:  
Section 2 describes the previous work on software project estimation and why estimation is different in agile projects. 
Section 3 describes research design. The results are presented in section 4 and finally, section 5 concludes and describes the 
future work.   
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RELATED WORK  

Estimation Approaches 

Over the past years, many effort estimation models have been developed such as COCOMO, Function points or other 
algorithm driven methods (e.g. Albrecht et al. 1983; Bailey et al. 1981; Basili et al. 1981; Boehm 1981; Conte et al. 1986; 
Kemerer 1987; Matson et al. 1994; Putnam 1978; Shepperd et al. 1997; Walston et al. 1977). Heemstra (1992) provides a 
detailed overview of some software effort estimation models prior  to 1992. Here we only briefly discuss COCOMO (Boehm 
1981) which estimates the effort as the function of size and productivity factors. The COCOMO model was developed based 
on a regression analysis of 63 completed projects. COCOMO relates the effort required to develop software (person-months) 
to project size.  

Effort = aSizeb

Where size is typically measured as lines of code (LOC), b is a productivity parameter and a is an economies or diseconomies 
of scale parameter. The development environment such as people, process and product factors is represented in terms of 15 
cost drivers that can be adjusted to explain the project variations.  The COCOMO detailed model divides the project into four 
phases (product design, detailed design, coding/unit test, and integration test). The 15 cost drivers are different in each phase,  
and  COCOMO estimates the cost of each phase separately.  

Estimation models have been reported to have high error rates in estimating software development effort. For example, one 
study reported an average of 600 percent error rate using COCOMO (Kemerer 1987). Function points (Albrecht et al. 1983) 
is also reported with mixed results (Jeffery et al. 1993a; Jeffery et al. 1993b; Kemerer 1987; Matson et al. 1994). The major 
reason is that models were developed based on specific projects and were hard to generalize to other environments. For 
example, one study found that these models were only valid within the organizations in which they were developed (Basili et 
al. 1981). Another study on the factors impacting estimation found that variable “company” accounts for 68% of the variance 
of productivity (Maxwell et al. 1999). So companies need to establish their own software matrix for accurate estimation. 
Even within one company, there are many factors influence productivities: people, process, product, technology, etc. 
However, research has found that including a large number of factors into the model was not very helpful to increase the 
estimation accuracy (Krichenham 1992). One reason was that the interplays among the factors were not captured in the 
model. The adjustment of these factors was treated as if they were independent even though many of them were intertwined 
with each other.  

Beyond the formal models, there are other approaches such as case-based, rule-based, expert-based estimation and analogy 
(e.g. Jorgensen 2004; Mukhopadhyay et al. 1992; Shepperd et al. 1997).  Among them, the expert-based estimation is the 
dominant strategy used in the industry (Heemstra 1992; Molokken et al. 2003). The expert-based estimation includes 
intuition/experience and expert judgment supported by historical data, process guideline and checklists (Jorgensen 2002). 
Many studies suggest that experts have the same or better accuracy as the formal models (Jorgensen 2002).  

Estimation in Agile Software Development 

Agile effort estimation is different from that in traditional software development. An important source of estimation difficulty 
in agile development is requirements volatility. There are two major sources of requirements volatility: the probability of a 
change in requirements in the future, and the vagueness of the requirements (Savolainen et al. 2001).  Users rarely have well 
defined needs, least of all in the early stages of the product's development. So instead of complete and accurate requirements, 
users’ concepts of the problem evolve during the development process (Mrenak 1990). In agile development, users keep 
requesting changes throughout the development process. As a result, agile project scope is continuously adjusted throughout 
the project. New tasks are discovered, as customers keep requiring new features. Tasks due to underestimation are discovered 
during development. Also, planned features are removed or deferred because of the schedule constraints. Unlike in the 
traditional approach where most of the new tasks are discovered during the detailed design phase, in agile development new 
tasks are discovered in each iteration. For example, in a project involving 30-iterations, less than 50% of the tasks were found 
during the exploration and analysis phase, 25% new tasks were found during the next ten iterations, and 25% were found in 
the last ten iterations (Fuqua et al. 2003). This amounts to serious underestimation of the effort (100% to be exact).  

Another distinct characteristic of agile development is the short feedback loop. Traditional projects estimate at the beginning 
of the project based on initial plans. Agile projects don't use traditional upfront plans.  Agile planning includes a release plan 
and a series of iteration plans. A release plan includes a list of the key features that will be developed for the next release.  An 
iteration plan is a tactical development plan for a specified period (usually 2 to 4 weeks).  The iteration plan takes the highest 
priority features, and based on developer estimates, selects a set of them to work on for the iteration.  Each story is broken 
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down into tasks by the development team.  Tasks can then be individually estimated, and developers can sign up to work on 
them.  Project managers can now use the iteration cycle to track progress in terms of completed features (stories), and 
outstanding tasks.  According to agile planning literature (Beck 2000; Beck et al. 2001), “yesterday’s weather” is an excellent 
source for predicting today’s weather. i.e., data from a preceding iteration predicts how much work can be finished of the 
coming iteration. This adjustment happens at the beginning of each iteration.  An estimate of velocity (similar to 
productivity) is adjusted for each iteration based on the actual velocity achieved in the iterations that have been completed 
until then. The data used in making this estimate are the actual work time and the number of stories implemented in each 
iteration. It is claimed that the continuous adjustment quickly improves the agile estimation, and estimation is quite accurate 
after a few iterations (Cohn 2005).  

This statement aligns with the conventional wisdom that the estimates improve as a project process. The uncertainty 
decreases significantly as the developers obtain more knowledge about the project. In agile software development,  it is 
claimed that as the development progresses, the estimates gets very accurate after the first few iterations due to the 
cumulative effect of learning (Beck 2000; Beck et al. 2001; Cohn 2005). However, there is no study testing this claim.   

Ideally team velocity is kept stable over the iterations. However, a field report shows that velocity fluctuates with a 20% 
variation (Fuqua et al. 2003). Unstable velocity makes the estimation difficult. More interestingly, the developers commonly 
worked with the assumption that their velocity was stable, without carefully collecting and analyzing relevant data.  

RESEARCH METHOD 

This project is a desktop support system for both Windows® and Macintosh ®. The development team followed eXtreme 
Programming (XP) method. The project lasted 46 two-week iterations (460 working days). The team had 15 developers 
working on the project during the first 34 iterations. From iteration 35 to 46, many developers were removed from this 
project and only 5 developers stayed (including a new developer who joined the project from iteration 35).  

Data Item Description Unit Comments 
Priority Priority of the story   
Title Title of the story   
Name Short description of the story (not 

included in table 3) 
 

Platform w  -- Windows 
m – Macintosh 

 

Owner The owner of the story – the developers 
who are assigned to work on this story  

 

Initial Story If it is an initial story 0—no 
1---yes 

 

Initial Est The estimated time for a story  Ideal hour Only available for iteration 1-6  
Initial Task Est The total time for all the initial tasks of a 

story 
Ideal hour Derived from task level. Sum of Task 

Est for initial tasks only (Table 2) 
Total Task Est The total time for all the tasks (including 

initial and non-initial tasks) of a story 
Ideal hour Derived from task level. Sum of Task 

Est for all tasks (Table 2) 
Actual Time The total actual time for all tasks Ideal hour Derived from task level, sum of Task 

actual time (Table 2) 
EC  Engineering complete---the story is 

considered complete by the owner 
0 --- no 
1--- yes 

 

CC Customer complete—the story is 
considered complete by the customer 

0 --- no 
1--- yes 

 

Table 1. Data Items at Story Level 
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Data Item Description Unit Comments 
Priority Priority of the task   
Task Code of the task   
Name Short description of the task, not 

included in table 2 
 

Initial Task If it is an initial task   
Owner The owner of the task – the 

developers who are assigned to 
work on this task 

 

Initial Est The estimated time for a task Ideal hour Some data are missing  
Actual Time The actual time for a task Ideal hour Some data are missing 

Complete If the task is complete 
 

0 --- no 
1--- yes 

 

Table 2. Data Items at Task Level 

 

The data collected is at two levels: story level and task level. The data includes estimates and actual effort data on more than 
1000 stories (about 6900 tasks) in 46 iterations. The story level data includes all the stories and bugs planned for each 
iteration. Some estimated and actual effort data at story level are derived from data at task level, which contains the basic 
information, estimation and actual effort of each task. Table 1 summarizes the data items at story level and table 2 
summarizes the data items at task level.  

Table 3 is the example of story level data (iteration 8). Table 4 is the example of task level data (story 70m of iteration 8).  
The two examples also show that some estimation and actual data are missing. The missing data points at task level results in 
the inaccuracy of data that are derived from them at story level. In this example, among the 23 tasks, 2 tasks missed both 
estimated and actual time data, 7 tasks missed actual time data, and 2 tasks missed estimated time data. As a result, in story 
level (table 3) for story 70m, the initial task estimation (77), total task estimation (85) and actual time (67) were not accurate. 
It is hard to compare the estimated and actual effort of each story. 

To deal with the missing data issue, I removed all the tasks that have missing data on either task estimation or actual time. 
For example, after the 11 tasks with missing data are removed, the initial task estimation is still 69, the total task estimation is 
69 and the actual time is 62. There are about 4000 tasks left after all tasks with missing data were removed. Then I used the 
average size of the stories as the data unit for data analysis.  

Some iterations were refactoring iterations during which no new features were developed. I removed the refactoring 
iterations, as a result, there are 31 iterations that involve new story development and 35 iterations that involve bug fixing.  

In this research, the accuracy of estimation is measured as mean magnitude of relative error (MMRE).  

MMRE= 
nactual

etimatedactualni

i

100||
1
∑
=

=






 −

Where n is the number of observations.  
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Priority Title Platform Owner 
Initial 
Story 

Initial Est 
[ideal 
hours] CC EC 

Initial 
Task Est 
[hours] 

Total 
Task Est 
[hours] 

Actual 
Time 
[hours] 

1
Story 
87w w HT 0 0 1 1 8 8 13.50 

2
Story 
100m m DH 0 0 1 1 18 21 26.00 

3
Story 
100w w DH 0 0 0 0 0 0 6.00 

4
Story 
89m m KM 0 0 1 1 0 0 4.00 

5
Story 
90w w JC 0 0 1 1 0 0 7.00 

6 Story 102 m/w CP 0 0 1 1 0 0 12.00 

7
Story 
70m m DH 0 0 0 0 77 85 67.00 

8
Story 
70w w DH 0 0 0 0 8 8 7.00 

9
Story 
94m m BK 0 0 0 0 14 14 13.00 

10 
Story 
94w w JRC 0 0 1 1 4 4 1.00 

11 
Story 
22w w FZ 0 0 0 1 11 11 12.00 

12 
Story 
99m m TR 1 0 0 0 87 93 102.00 

13 
Story 
99w w MK 1 0 0 0 32 45 40.50 

14 
Story 
108m m MR 1 0 1 1 2 2 5.00 

15 
Story 
108w w MK 1 0 1 1 0 0 0.00 

16 
Story 
109m m MR 1 0 1 1 0 0 2.00 

17 
Story 
109w w MK 1 0 1 1 0 0 0.00 

18 
Story 
90m m FZ 1 0 0 0 7 9 8.00 

19 
Story 
69m m ZN 1 0 0 0 26 27 2.50 

20 
Story 
69w w ZN 1 0 0 0 11 11 4.00 

Table 3. Example Data at Story Level of Iteration 8 
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Priority Task Initial Task? 
Initial Est 
[ideal hours] Owner 

Actual Time 
[hours] Complete? 

7.1 A 1 6 SC 8 0 
7.2 B 1 24 MR 3 0 
7.3 C 1 5 JC 8 1 
7.4 D 1 2 JC 4 0 
7.5 E 1 10 SC 19 1 
7.6 F 1 2 JC 2 1 
7.7 G 1 6 DH 7 1 
7.8 H 1 2 JC     
7.9 I 1 1 JC 1 1 
7.10 J 1 1 DH     
7.11 K 1 1 SC     
7.12 L 1 1 DH     
7.13 M 1   JP     
7.14 N 1 2 CP 1 1 
7.15 O 1 3 CP 1 1 
7.16 P 1 4 CP 4 1 
7.17 Q 1 4 CP 4 1 
7.18 R 1 3 MR     
7.19 S 0   CP 1 1 
7.20 T 0   JC 4 0 
7.21 U 0         
7.22 V 0 2       
7.23 W 0 6       

Table 4. Example Data at Task Level of Story70m in Iteration 8 

 

RESULT 

Actual versus Estimates 

Figure 1 and 2 show the actual vs. estimates of effort on stories and bugs, respectively. The solid lines show that the actual 
equals estimates. The data shows that underestimates (actual >estimate) is more frequent and severer than overestimate for 
both stories and bugs. However, bugs are more difficult to estimate as the actual efforts are significant greater than the 
estimates. 

The results show the similar distribution scatter of the traditional projects (Demarco 1982, Little2006). Breaking a big task 
into smaller pieces seems not totally solving estimation problem. Developers still underestimate the effort ate story/task level.   
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Figure 1. Estimated Effort vs. Actual Effort in Ideal Hours 
(Stories) 

 

Figure 2. Estimated Effort vs. Actual Effort in Ideal Hours (Bugs) 

 

MMRE over Time 

Figure 3 shows the data of MMRE at all iterations (the data on iteration 14 and 43 are missing).   

First, Figure 3 shows that on average bugs have bigger MMRE than stories. The effort of fixing a bug is more unpredictable 
than the effort of implementing a new story. The average MMRE is 19% for stories and 28% for bugs. 

Second, the effort estimation is not improved over time as agile methods claimed. This results confirms the findings of a 
recent study on non-agile projects (Little 2006), which found that the uncertainty range was nearly identical throughout the 
project stages. This tells us that other factors such as resource availability, requirements change, insufficient refactoring, lack 
of unit tests, communication problems, and distractions may have significant impacts on the estimation. The continuous 
adjustment and quick feedback loop will not eliminate the uncertainty.   
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Figure 3. MMRE of Each Iteration  

 

Accuracy 

Figure 4 shows the cumulative probability distribution as the lognormal distribution of the ratio of actual to estimated effort 
of stories (the cumulative distribution for bugs is similar). This curve shows the percentage of data points that have a value 
lower than the value of actual/estimate. For example, about 25% of the iterations have actual that were lower than the initial 
estimation (ratio =1.0).  
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Figure 4. Cumulative Distribution (Stories)  

 

The lognormal distribution tells us that the factors impacting estimation are interdependent to each other. To identify those 
factors and their relationships is critical for accurate estimation. The S-curve confirms the previous studies (DeMarco 1982; 
Little 2006), but it has significant narrower range of the x-axis which is the ratio of actual to estimate. Furthermore, the ratio 
of P90 (90 percent confidence of the target being met) to P10 (10 percent confidence of the target being met) is 2.42, which is 
lower than the reported data on traditional projects (Table 5). That suggests that agile estimate is more accurate than that of 
traditional development. This result is confirmed with the findings of a previous study (Molokken-Ostvold et al. 2005).  
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Studies P90/P10 Range of ratio 
(actual/estimate) 

This study 2.42 0. 6- 2.6 
Little (2006) 3.25 About 0.7-9.0 
Demarco (1982) 5.2 About 0.8-8.0 
Boehm (1981) 4.0 NA 

Table 5. Comparison of Estimate Accuracy 

CONCLUSIONS 

Effort estimation in agile software development is studied in this research based on data collected from a large agile project. 
The results show that estimation in agile development is more accurate than traditional approaches but certain degree of 
underestimation still exists. The study also shows that the estimation is not improved over time as claimed in agile literature. 
The study contributes to both the research on software estimation and agile software development.  

The quick feedback from previous iterations and the transparency of development process in agile methods enables 
continuous adjustment of the estimation during the development process. Moreover, the estimation in agile projects is at 
task/story level, which is small in size. The continuous adjustment and small task size improve the overall estimation 
accuracy. However, confirmed with the findings of a previous study on  106 non-agile projects (Little 2006), it is interesting 
to find that the estimation is not getting better overtime during the development process, as claimed in agile methods. This 
tells us that the impact of other factors on the estimation process is significant, which needs to be investigated in the future 
research. More data needs to be collected from projects in other organizations to validate the results.   
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