
An Object-Oriented Solution to an
Interdisciplinary 3D Visualization Tool

Craig Sinclair, Todd Little, M. Ahsan Rahi

Summary
This paper describes the design and implementation of an
interdisciplinary 3D visualization tool. An object-oriented
approach was used to overcome deficiencies within 3rd
party graphical toolkits and incompatible data formats. It
also facilitated multidisciplinary visualization by
providing a coherent framework for combining drawing
technologies from the different discipline. The tool kit
was designed to be extensible and supportable since it
was expected to continually evolve to meet new market
requirements.

Introduction
Improvements in computational and acquisition
technology has rapidly been met by geoscientists
developing more complex geophysical, geological and
reservoir simulation models. These models have become
so complex that to understand them requires interactive
three dimensional visualization. For studies that integrate
these models an integrated visualization tool helps gain
insight into the interrelationship of the data as it
progresses through each geoscience discipline.

We set out to provide a single visualization tool that
addresses the needs of the geoscience disciplines to
facilitate an integrated approach to exploration and
production. Our object-oriented approach gives a
practical, extensible and supportable solution for
applications developers to provide end users with the
desired multidisciplinary visualization capability.

The problems that arise when dealing with visualization
for multiple disciplines are largely due to the dissimilar
representation of similar underlying data. Geophysical
models deal with large volumes of geometrically regular
data whereas reservoir simulation models typically deal
with smaller volumes of irregular data. To develop a
visualization tool suitable for either of these cases
requires exploiting the implicit nature of the data to
optimize the drawing and memory management portions
of the code. The prevailing approach in the industry thus
far has been to create separate specialized programs for
the various disciplines. This has led to applications that
interact on the data level but cannot render data
simultaneously to a single scene.

Object oriented technology is well suited to creating a
visualization tool that must combine similar but different
graphical grid types, data models and user interfaces.
Being able to derive specialized classes from a base class
allows common implementation to be shared between
radically different derivations of the same item, such as a
grid. Objects can be implemented for the different
disciplines with optimized rendering, data storage and
memory management routines. A single application will
not need to be aware of which implementation is used but
will interact with all the objects through a common
interface in a seamless manner. In this way data from
different disciplines can be viewed together in a single
scene.

Current Three Dimensional Technology
Alternatives
Three dimensional visualization technology is rapidly
expanding, creating a period of transition where
technology tries to provide solutions for new domains.
Display list systems (also called retained mode), such as
HOOPS[1] or PHIGS, have been very successful in three
dimensional CAD applications. However, scientific
application developers have found it difficult to use this
paradigm due to the dynamic nature and sheer volume of
scientific data. Dynamic data changes the scene from
frame to frame requiring the graphics data base in a
display list system to be continuously edited and
rendered. Also, using a graphics data base causes
duplication of information and requires implicit structures
to be defined in explicit geometry. These problems in
using display based systems have pushed geoscience
application developers towards immediate mode libraries
such as Silicon Graphics' GL which exhibits better
performance and resource utilization for dynamic data.
However, immediate mode systems are not without their
drawbacks either. Display list systems currently provide
the only acceptable solution to scalable hardcopy. They
also provide better portability and features than
immediate mode systems. It is apparent that neither
system by themselves can provide a complete solution for
three dimensional visualization of the type envisioned
here. A system which combines the best of both graphical
system would provided the best solution.

Visualization environments such as AVS, IBM's Data
Explorer and SGI's IRIS Explorer have been used for
visualizing geoscience data. These systems provide well-
defined environments in which visual networks create
three dimensional scenes from data sources. A major
problem with these systems is the amount of resources
necessary to render pictures. There are two reasons for
this heavy demand: the systems require data to be mapped
to internally supported data types and furthermore, the

data flow architecture tightly ties the data to the
visualization. Mapping data from one form to another can
result in duplicate copies of the data; one for the
application and one for the visualization system. The
second cause, that of tying the data to the visualization
occurs because the visual networks are set up using a data
flow methodology. This requires all input stubs of a node
to be primed before the node will fire. Therefore, in
typical networks, all the geometry and attributes required
for a scene must be supplied at the same time resulting in
an excessive amount of system resources (i.e., memory)
being used. This problem is further compounded when
viewing data from multiple disciplines in the same scene.

Integrated Visualization
Simple three dimensional viewing works well for static
data. However, with interdisciplinary analyses, data can
no longer be considered a static entity. To effectively
handle integration, data should be thought of as a stream
or evolution of numbers. Each stream has several sources
of input, which, through calculations and 'massaging',
produce several output branches. The output branches are
used to feed the input branches of subsequent streams.
For example, geological zone data from wells is
converted, through interpretation and calculations, into
grid layers. The layers are then used to generate a
reservoir grid and upscaled attributes for reservoir
engineering. There is a many-to-many relationship
between the input and output branches. To provide an
iterative approach to seismic, geological and engineering
disciplines, the streams as well as the data must be
retained. As changes are made to the source branches, the
change must be propagated through all the streams that
are interconnected. The transition within the streams can
be visually verified by displaying the input and output
branches together. Three dimensional concurrent viewing
of input and output sources provides a powerful tool for
editing and viewing the iterative propagation of dynamic
data through the disciplines.

Object Oriented Solution
At the time this project was initiated there were no
graphical layers or environments that addressed all our
concerns for speed, efficiency, flexibility and features. It
was decided therefore to develop a tool kit that would
provide the necessary components to create integrated
applications. The tool kit would provide high level
abstractions for each discipline and use existing graphical
systems for the actual rendering.

Objects provide a nice paradigm for creating the building
blocks for an integrated viewer. This can best be
illustrated through the example of a grid. Each discipline
has the concept of a "grid" making it an ideal candidate to

be shared. But is a seismic grid the same as a reservoir
engineering grid? This is certainly implied by the name,
but when you start talking to a geophysicist and an
engineer it becomes apparent that there are fundamental
differences in the manner each of these disciplines defines
a grid. There is still some commonality in that they both
describe an array of numbers with a logical ordering. In
our design a Grid Object is used to represent grid data
and its corresponding topology.Common elements such
as the data and functions which define the logical
ordering are part of the Grid Object class. The
specialization required for each discipline are part of the
objects derived from the Grid Object class. This separates
out only the unique functionality keeping the
commonality grouped together.

Architecture
The basic concept in our object oriented design is to use
objects to create high level tools called drawing objects
that can display geophysical, geological or reservoir data.
The raw input data and the subsequent graphical
representation by the underlying graphic subsystems is
completely separated from the implementation of the
Drawing Objects, see figure 1. Access to the data and the
visualization system is through specialized objects that
implement a generic interface.

The Visualization objects dynamically switch between
GL, HOOPS (for PostScript, image and CGM output) and
picking. This design is a hybrid between driver
technology found in classical functional graphic systems
and a completely object based system.
Removing the data from the graphic implementation was
done for efficiency and to allow greater flexibility in
accessing different data sources. When dealing with large
volumes of data, it is often more efficient and sometimes
necessary to handle the data outside the geometric
database or system. Our experience indicates geoscience
applications have a better understanding of their data than

the underlying visualization system and can therefore use
implicit information to store and retrieve it more
effectively.

Separating the data, visualization and high level objects in
this manner provides a versatile system. Data access and
output can be programmatically selected allowing a great
deal of flexibility within an application. Since the objects
interact in a generic fashion a building block approach
can be taken in constructing the application. Objects can
be combined differently to provide multidisicplined
integrated 3D-viewers or a 3D-viewer of a single
discipline and data source.

Visualization Objects

The visualization objects insulate the application from the
underlying graphic subsystems. The objects dynamically
handle identical graphical requests based on which
graphic system (i.e., GL or HOOPS) is selected
programmatically. This approach was used to obtain
adequate interactive drawing times for dynamic data
through Silicon Graphic's GL library. However, HOOPS,
a display list system, is used to render a picture to
hardcopy or an X display. The visualization layer, see
Figure 2, goes beyond just providing a procedural
interface, it bridges the fundamental differences between
display based and immediate mode architectures. There is
not enough commonality between display list and
immediate modes to allow a simple procedural mapping
to work. The Visualization Objects provide generic calls
that are independent of the graphics systems by retaining
enough information to render to either system. The
amount of information stored for windows, viewports,
cameras, etc. is small compared to the geoscience data
and does not severely impact memory usage. In effect, the
system is semi-display based where graphical objects are
retained making it easy for an application to use them
while having data, the resource killer, used in an
immediate mode fashion.

All the visualization objects dynamically switch from one
driver to the next. Unfortunately, inheritance in C++ is
not dynamic after an object has been instantiated. This
meant the polymorphic nature of objects was not
sufficient to implement the dynamic behavior. Instead,
our Visualization Objects use functional pointers to allow
an object to alter how it handles calls. To change from
GL to HOOPS Visualization Objects simply change their
pointers. Visualizations objects which are derived from
other Visualization Objects (i.e., a Graphics Area which
is a specialized window for rendering three dimensional
pictures) must change their whole inheritance tree. All
our class definitions are composed of generic functions
(functions that are common to all graphic systems),
dynamic functions (functions that depend on the graphic
system with corresponding pointers) and state information
(encapsulated data that is common to all graphic systems).

Drawing Objects
Drawing Objects are our high level implementations of
grids and other data types. Each different Drawing Object
contains an optimized drawing algorithm for the area it
deals with. The implementation is graphic system
independent. Rendering by the drawing objects is done
through the visualization objects.

Currently, we have implemented three types of grids:
uniform, semi-uniform and corner point. Each grid has
logically ordered data of size NX by NY by NZ.
However, the geometric descriptions are different. The
uniform grid is geometrically constant in three
dimensions. This means that the geometry can be implied
and calculated as needed. The semi-uniform grid is
geometrically constant areally, but varies in the Z
direction. Therefore the Z grid corner points must be
defined by NX+1 by NY+1 by NZ+1 values, while X and
Y corners are implied. Corner point grids allow
discontinuities in all directions and are thus defined using
8 values of X, Y, Z per cell.

Our uniform, semi-uniform and corner point are different
types of logical grids so they inherit the Grid Object class,
see Figure 3. The derived classes contain data and
operations specific to each grid. For example, a corner
point grid optimizes drawing by removing faces that are
invisible. It does this by maintaining a list of faces that
are adjacent and therefore invisible if they are in the
interior of grid. However, in Uniform grids this
optimization is not required because all faces are
guaranteed to be adjacent to another face if they are not
on a boundary. Although the list of differences among the
grids can be extensive, it does not result in the duplication
of functionality; common data and functions are shared
through the inheritance of the GridObject class.

Grid Objects define a virtual draw method which must be
implemented in the derived classes. Applications draw
grids by accessing this method and can ignore what type
of grid is actually being shown. The draw method, in turn,
renders their cell representation accessing methods
defined in the Visualization Objects (i.e., polygons or
meshes).

This design has shown to be extensible over time. A
prototype seismic viewer was implemented and then
shelved for 12 months. When it was resurrected the
compile indicated all the modifications that must be made
to the interface. By making minor adjustments the seismic
viewer was updated in seven days even though there was
a significantly revamped data base and graphical toolkit
sitting underneath the application.

A key component to our system is how the Grid Objects
efficiently and portably access data. Grid Objects are
designed in a demand driven [4] fashion which means
that they make requests to Data Objects at the time they
require the data and not before. A demand driven system,
by definition, does not propagate data until it is required.
When the data is requested there is a backward chain of
requests until the data is returned. In the context of the
Grid Objects this simply means the grid data is loaded
from outside sources when it is required in the rendering
algorithm and not before. Therefore, the Grid Objects can
trade off between memory requirements and access speed
to optimize drawing.

Data Object
Data Objects contain functions that feed data to the Grid
Objects. The functions declared within the Data Object
are pure virtual functions, see figure 4a, which means the
actual implementations for the functions must be defined
in a derived class. In other words, for a Grid Object to
be used, an object must be defined which is derived from

a Data Object and this object must implement the pure
virtual functions declared in the Data Object. The derived
object will typically do this by accessing a specific source
of data. Currently, we have created three derived types,
one for 3D seismic data, one for geological data and one
for reservoir data. The reservoir Data Object has been
further refined to access different sources of reservoir
data.

Any object derived from a Data Object can feed data to
an object derived from a Grid Object, see figure 4b. This
allows objects to be mixed and matched within
applications providing the programmer with the building
blocks to create integrated viewers. This process is
simplified by the fact that all Data Objects are self
contained and communicate through a well-defined
interface.

Application
Applications can be built by combining Data Objects,
Grid Objects and Visualization Objects in different
combinations. For example, a viewer which displays
reservoir data in a Motif Window can be created by using
a Data Object that reads reservoir data, a corner point
Grid Object and a Visualization Object for Motif
windows, see figure 5. This can be then repeated for
geological data creating an application which displays
two types of data. To create an integrated viewer the Grid
Objects are simply combined into one window. The Grid
Objects are all derived from the same base class so the
application can ignore the fact that the grids are
displaying different types of data in the same window.

Several applications have been created on top of Grid
Objects and Data Objects such as a seismic viewer, a
geological viewer, 3DVIEW a reservoir visualization
system, and an integrated viewer which displays
geological and reservoir data. Each application has the
ability to use multiple scenes. This allows the user to
create multiple instances of the same grid, different grids
(within the same a model), different models or even
different types of models. The integrated viewer can also
incorporate multiple grids into each scene. The additional
grid can be the same grid, a different grid, a grid from a
different model or from a different discipline. In
interactive mode each viewing area is brought up as a
Motif Main Window providing the user with all the
familiar window controls provided by Motif. In hard copy
mode each scene is created as a separate window and
layered on the page as they appeared on the screen.

Conclusion
The design and use of object oriented technology has
resulted in a system that is flexible, extensible and
portable. We have created reusable components for the
different geoscience disciplines. This has simplified
implementation and maintenance activities such as
testing, porting and debugging. Updates, re-organization
and concurrent development have thus been possible
throughout the life cycle of the system.

The geoscience objects provide the framework for
creating integrated applications. Grid Objects and Data
Objects can be mixed together in various fashions
providing a flexible system for combining data from
different disciplines. Interdisciplinary analysis is now
augmented by simultaneously viewing different
geoscience data within a single application.

References
1. Wiegand, G., Covey, R., and Couch, P.: HOOPS
Reference Manual (Version 3.2)

2. Stroustrup, B.: The C++ Programming Language --
2nd ed., Addison-Wesley Co., New York (1993).

3. Bahrs, P., Dominick, W., and Moreau, D.:"GO||: An
Object-Oriented Framework for Computer Graphics,"
Computer Graphics Using Object-Oriented Programming
(1992) 111-136

4. Wadge, W. and Ashcroft, E.: Lucid, the Dataflow
Programming Language, Academic Press, Inc., London
(1985)

