
Leveraging Global Talent for Effective Test Agility

Todd Little

Halliburton, Houston, TX, USA

tlittle@lgc.com

Suzanne Elliott

Halliburton, Houston, TX, USA

selliott@lgc.com

Joe Hughes

 Logigear, San Mateo, CA, USA

joeh@logigear.com

Florin Simion

Simco, Bucharest, Romania

fsimion@simco.ro

Abstract—A major challenge in agile development is the ability

of test teams to keep pace with ongoing development while

simultaneously ensuring that new development has not created

regression failures. This case study from Halliburton shows

how together with two globally distributed outsourcing

partners they developed a comprehensive test automation

strategy for their agile teams that effectively leveraged both in

house and outsourced activities. This approach resulted in a

significant quality improvement from prior releases.

Keywords: Outsourcing, Agile Development, Test

Automation, Distributed Teams, Offshore

I. INTRODUCTION

Over the years many agile proponents have come out
strongly against offshoring some of the development team,
and in particular against having a remote testing team. We
had a corporate mandate to utilize offshore outsourcing and
decided we were going to make the best of it. In the end we
were pleasantly surprised by the overall results. We made
use of not one, but two separate outsourcing providers
located in two distant locations. While we had many
challenges, what we found was that by starting with an
overall testing strategy and an understanding of the strengths
and constraints, we were able to optimize the problem
globally to achieve outstanding results. In particular, we
were able to reduce defects found in customer beta testing by
84% and known customer issues at deployment by 97%.

II. BACKGROUND

Landmark Graphics is a wholly owned subsidiary of

Halliburton and is the premier provider of software and

technology services for the upstream oil and gas industry.

Its software solutions help geoscientists and engineers make

highly complex technical and business decisions. The

specific product line involved in this case study is

DecisionSpace Nexus[1][2], a next generation reservoir

simulation software suite which utilizes a finite difference

mathematical model to allow companies to accurately model

hydrocarbon assets, enabling rapid decisions on high-dollar

development scenarios.

Like many other software systems, Nexus is collection of

integrated applications. This system of systems comprises

multiple millions of lines of source code and provides a

complete user experience from data preparation to

numerical simulation to 3-dimensional visualization. And

while many modules of the Nexus family are next-

generation, there are several aspects that are legacy and are

complicated further by the need to support both the next-

generation simulator as well as the legacy simulator.

Figure 1. The Nexus Software Family

Figure 1 shows a simplified view of the software system and

is further described in Table I.

TABLE I.

Component Language Started Summary

Data Studio C++/MFC 1996 Data preparation, also supports
legacy simulator

SurfNet Java 2009 2D view of wells and

production network

NexusView Java/OpenGL 2004 Enables visualization in 3D of
reservoir simulation over time

Nexus Fortran90

and MPI

2001 Computational engine, often

runs on high performance

cluster on multiple processors.

User Interface Graphical Surface
Network Interface

Graphical 3D
Rendering

High Performance
Cluster

mailto:tlittle@lgc.com
mailto:selliott@lgc.com
mailto:joeh@logigear.com
mailto:fsimion@simco.ro

III. THE DEVELOPMENT AND TESTING PROCESS

The Nexus development team had been doing many
things right since they started development in 2001, but had
not fully embraced agile development. In 2007 the team
moved to a more structured Scrum environment. While not a
drastic change for the team, the additional structure seemed
to work well and helped identify some of the areas where
there were bottlenecks. We will revisit some of the specifics
of the agile implementation and team coordination later.

A. Existing Test Approach

One of the most important things that the entire team
realized was the importance of having an automated
regression test suite which exercised the functionality
without going through the graphical user interface. While
the team did not have extensive unit tests, they did have a
good set of functional tests that provided overall feature
coverage. Prior to any commit being finalized the
development regression suite was run. In addition to the
developer regression suite, the team relied on a customer
regression suite, a manual smoke test, and additional
exploratory testing. The developer regression suite safety net
had paid off well for the team and they had general
confidence in their check-ins. However, these developer tests
were not finding issues that were showing up in the more
complicated customer models. To make matters worse, the
big challenge with the customer regression suite was that it
took almost a week of computation time on a high-end
cluster to determine if the tests passed or failed.

B. Challenges Testing High Performance Computing

High performance computing software is designed to be
able to run on multiple processors, sometimes upwards of 64
or 128 cores. This parallel computing can effectively reduce
computation time significantly. The flip side of that is that
there is a reason why the software needs to use a lot of
processing power – it is doing very complicated scientific
calculations that take a lot of computational cycles. While
Moore’s Law and multicore processors have increased
computational power, the complexity that the engineer builds
into their models has grown in lockstep. Engineers tend to
design their models so that they can get results back with
overnight turnaround. Some models like those in our
customer suite take several days to complete. One engineer
at a customer site joked that the most complex models are
measured not in days, but in haircuts.

C. Additional Challenges of Testing Simulation Software

In addition to the challenges of long computation times,
reservoir simulation brings the additional challenge that the
problem is being solved by approximation techniques. In
other words, small perturbations in either data or algorithmic
code, or even running on a slightly different processing
environment can result in different output results. The
development team had been long aware of that issue and had
built an intelligent differencing tool to help understand
whether generated results were within engineering accuracy
of the baselined results.

Figure 2 shows a fairly standard approach to test
automation. A given test scenario is run through the system
and the results compared against a known baseline. For most
software testing the difference is absolute. What is required
for our situation is to have a smarter differencing engine that
compares results and reports on whether the differences are
within engineering accuracy. If they are, the new results
then become the new baseline. If not, then there is an issue
that needs to be addressed or understood. Sometimes our
engineers will find that while the results do not appear to be
within engineering tolerance, the software is nonetheless
doing the right thing. The differences are artificial and could
be considered the results of “butterfly effects” of a poorly
conditioned system.

Figure 2. Test Automation

IV. OFFSHORE OUTSOURCING

In 2005 the organization made a decision to significantly
increase the amount of offshore outsourcing of software
development and testing. Landmark had been involved with
an outsourcing partner since 2001, but the Nexus team had
not been involved.

A. Offshore Outsourcing - India

Towards the end of 2005 the Nexus team started working
with an outsourcing partner in India to add a team of 6
developers and testers and began searching for a petroleum
reservoir engineer to help guide the team with their
understanding of the domain. At this time the world market
for petroleum engineers was very scarce, and this proved to
be even more of an issue in India where there is not a strong
petroleum industry. In a period of more than a year, the
outsourcing partner could only hire one qualified petroleum
engineer, and that individual left after only 3 months. While
we did have some success with having the India team run the
manual smoke test every day, it became clear to us that we
would not be able to make things work effectively in that
environment without a domain expert.

B. Offshore Outsourcing - Romania

By 2008, after significant turn-over of computer science
staff and the fact that our India partner still could not find
qualified domain expertise, we started looking for Plan B. A
few years earlier Todd had met an individual at a Petroleum
Engineering conference that claimed to have a software
development group in Romania. That individual was Florin
Simion, one of the co-authors of this paper. Florin not only
had a software development team, but was himself a
professor of petroleum reservoir engineering with a specialty

Input Output

Baseline

Simulate

Difference

Engine
Report

in reservoir simulation. We thought we had a chance of
making things work by finding the right talent. It also helped
that the Romania time shift is 8 hours from Houston versus
the nearly 12 hour shift to India. We built a team of 2
software developers and 3 petroleum engineers. While we
had typical startup challenges, it was refreshing to talk to
engineers that actually understood what we were trying to
do. They quickly took over the smoke test, and while it
initially took nearly their whole day to run the manual smoke
test, they eventually got to the point where they could do it in
4 hours. This allowed time to do additional testing and also
to serve as domain experts to assist the development team.
The developers were working on Data Studio with one of our
long time Houston developers. That developer was originally
from France and had recently relocated back to France. That
turned out to work well as there was only a 1 hour difference
in time zone between France and Romania.

C. Offshore Test Automation – Vietnam

While our Romanian partner was working out well, the
Landmark outsourcing coordinator met another potential
partner while she was attending an outsourcing conference.
This partner was Logigear, a company that provides
outsourced test automation services primarily out of
Vietnam. We were intrigued because they not only provided
a low cost labor pool, but provided expertise in GUI test
automation including their own test automation software
toolkit. While we had been interested in doing more GUI
test automation, our team did not have the bandwidth and did
not really have the expertise to do it well. Our testers were
petroleum engineers and we needed them to have
engineering skills in order to know whether the test results
were meaningful. We saw this as an opportunity to augment
our domain talent with some test automation, thus allowing
our engineers to focus on higher value testing. We kicked
this off in 2009 with a team of 3 in Vietnam and a part time
project manager based in California.

V. THE PROBLEM

Despite doing many things well prior to 2009, the team
still struggled with quality issues. Developer tests were
catching many regression issues, but the more complex
customer regressions were still catching a lot of problems.
Besides taking a long time to run to provide results, the
problems discovered with the more complex customer data
were also difficult to debug. Figure 3 shows how the three
types of tests map when viewed in terms of complexity of
the overall tests and breadth of coverage of functionality.
Our developer test suite was very simple but covered most of
the functionality. The customer datasets, on the other hand,
did not utilize all the potential functionality, but were
significantly more complex both in terms of size of the
models as well as in the overall interactions with the models.
For the overall system, the smoke tests covered workflows
from the top six integrated training examples. These tests
did not exercise particularly complex scenarios, but did
provide reasonable coverage. Since they were manual tests
they were both time consuming and monotonous for the
testers.

Figure 3. Before: Test Complexity vs. Functional Coverage

Breadth of Coverage

C
o
m

p
le

x
it
y
 o

f
T
e

s
ts

Developer Tests

Customer

Models

Smoke Tests

(manual)

As things were, both the developers and the testers were
barely keeping up with the defect backlog. And when they
did think they had things under control the customers would
invariably find issues in beta testing or once deployed.

VI. WHAT WE DID

We decided that we needed to evaluate how we could
optimize our testing efforts. The developer and customer
regressions were working well but did require some
maintenance to keep up with new functionality. The team
felt that the greatest need was an additional set of tests that
were more complex than the developer tests and exhibited
some of the complexities of the customer datasets but would
provide overnight turnaround. We dedicated one of our
Houston petroleum engineer testers to developing what we
called the “Mid-Tier” regression suite. This suite of test
models was built of synthetic data subsets similar to some of
the more complex customer models. Effort was put into
making sure that the test suite would run overnight.

About the same time we started working with the
Vietnam team to automate our smoke tests. Our objective
was to increase coverage through automation, while at the
same time freeing up our reservoir engineers so that they
could utilize their domain expertise to do more exploratory
testing and to design more test cases.

Figure 4. After: Test Complexity vs. Functional Coverage

Breadth of Coverage

C
o
m

p
le

x
it
y
 o

f
T
e
s
ts

Mid-Tier

Developer Tests

Customer

Models

GUI Tests

(automated)

Every Checkin

Nightly

Nightly

Weekly

Smoke Tests

(manual)

Figure 4 shows the direction that we took with our testing
strategy. We looked at what was working and where we had
gaps. It was an investment that we hoped would pay out
with better coverage and faster feedback. With the help of
our outsourcing partners, we set out to make it happen.

VII. TESTING QUADRANTS

One useful way to look at testing strategy is through the
Testing Quadrants originally proposed by Brian Marick[3]
and then further expanded by Lisa Crispin and Janet
Gregory[4]. The Testing Quadrants are shown in Figure 5.

Figure 5. Agile Testing Quadrants

We largely focused the automation effort on Quadrant 2

and Quadrant 4. The mid-tier and customer tests were
geared first towards functional accuracy (Q2), but since
computational performance is one of our key differentiators
we made sure to track any performance changes as we ran all
our tests (Q4). It is also worth noting that the Nexus team
chose to use a lightweight form of functional testing with the
developer regression suite to cover what would often be done
via unit testing in Q1. The team did have some unit tests and
arguably could have had more unit tests, however their
approach to having a developer regression suite of
lightweight functional tests worked quite well for them. The
nature of the reservoir simulation problem is such the
solution of the whole system of equations is necessary to see
the full interplay of the complex physics being simulated.

A key aspect of our overall test automation strategy was
that it freed our valuable reservoir engineers to be able to
spend more time on Exploratory Testing (Q3). This is where
the engineers could really utilize their domain knowledge to
challenge the system in a manner likely to be used by one of
our customers.

VIII. TESTING LOGISTICS

The initial smoke test automation pilot project with
Logigear targeted the top six integrated workflows used for
Nexus software training. Test Leads for the pilot were
established at each testing location with workflows
prioritized and accountability for initial Logigear automation
split across assigned testing resources. Houston engineers
found it easiest to provide movies that guided the testers
through the integrated smoke test workflows. Our Simco test
lead had previously spent time with the team in Houston and

being very familiar running the smoke tests manually could
answer any questions the Logigear testers had regarding
workflow requirements that may not have been clear in the
movie clips.

In addition to providing experienced test automation
engineers LogiGear also provided the test automation tool
(TestArchitect) which they developed. Initially, the testing
tool required some development to support Linux as well as
some of the legacy application components. The ability to
customize the tool was critical so that all of the test cases
could be automated.

The tool utilized a methodology developed by LogiGear
called Action Based Testing[5]. With test automation a
potential pitfall is often the time required to maintain
automated tests. Especially in agile development the test
team has to keep pace with the ongoing development. If
major revisions of the automated tests are required for each
new software release then the test team will always have
problems keeping the tests up to date. A primary goal of our
automation was to utilize a method that would allow the
team to maintain and grow the test suite without major effort.

Using the Action Based Testing approach, the remote

test engineer viewed the movie and created the test cases as

a series of keywords (actions) with arguments. The

automation focused not on automating test cases, but

automating the actions. Since there are many fewer actions

than test cases, and action implementations tend to be

shorter than test case implementations, the automation effort

is more manageable. This is especially evident when the

application under test changes. Using the action based test

suite, only a limited number of actions had to be maintained.
The potential risk with this method is that the Test

engineers need to be well trained in test design to ensure
productivity through reusability and maintainability of test
keywords (actions) and tests. This approach also requires a
tool or framework that supports keyword-based automation
such as TestArchitect. Logigear is a company that knows
their core competency of test automation and focuses on it.
They have a very thorough training program to educate new
hires on Action Based Testing, the Test Architect tool, and
perhaps as important--how to work with different cultures.

Managing the globally distributed teams was challenging
but worked out quite well overall. Our primary development
was in Houston with some in France and Romania, while we
had domain testers in Houston and Romania with the
automation testers in Vietnam. Having the project manager
for Logigear in their California office was invaluable for the
communication required for test tool augmentation as well as
any necessary testing automation reprioritization.

IX. TEAM LOGISTICS

As mentioned earlier, the Nexus product line is made up
of multiple applications which are developed by sub-teams.
The individual products are quite different in their
technology, team size, amount of legacy code and other
parameters. The Context Leadership Model[6][7] shown in
Figure 6 is a model that we have used to look at projects
based on the degree of uncertainty and complexity.

Figure 6. The Context Leadership Model

Complexity includes project composition such as team

size, geographic distribution and team maturity. Uncertainty
includes both market and technical uncertainty. The four
quadrants are named with metaphorical animals described in
Table II.

TABLE II. CONTEXT LEADERSHIP MODEL

SheepDogs Simple projects with low uncertainty

Colts Simple projects with high uncertainty

Cows Complex projects with low uncertainty

Bulls Complex projects with high uncertainty

In Table III we show the four primary subprojects and

how they map out with the Context Leadership Model.

TABLE III. TEAM CHARACTERISTICS

Component Quadrant Team

Size

Iteration

Length

Standup

Data Studio Sheepdog 5 Iterationless 2/week

SurfNet Colt 7 1 week 1/day

NexusView Sheepdog 2 1 week 1/day

Nexus Cow 14 3 weeks 3/week

Overall Bull 28 3 weeks none

The Data Studio team, while globally distributed was

nonetheless fairly small and as well had very well defined
tasks necessary for the update from the legacy simulator to
cover the new functionality. With low uncertainty, generally
low complexity and a senior team leader, we let the team
largely manage themselves.

Surfnet was a new product and was looking to provide a
solution that no other commercial product currently solved.
This meant that it had high uncertainty. The team was
relatively small, although globally distributed. The senior
developers were collocated in Houston with 2 remote
developers and a tester in Romania. The product manager
was in Houston and his proactive involvement was critical.
To get the product started he developed a user story board.
The graphical description of the results he was looking for
worked very well to communicate with both the local and the
remote team. Of course the pictures were just an invitation
to a further conversation. The team relied heavily on the

product manager and he made sure to spend time with each
of the senior developers typically daily and often several
times per day. The remote team was managed independently
by one of the senior developers and communicated as
necessary via email and phone conversations with a
minimum of a weekly synch up meeting.

The NexusView team was two developers and one
primary tester. This project had some overlap with the
Surfnet project so we simply merged the team into the
Surfnet Scrum meetings.

The Nexus simulator team was by far the largest team but
was all collocated within Houston. Nexus is the core engine
and must coordinate with the other supporting applications.
Overall the uncertainty was moderate and the overall
complexity put it into the cow category. As a result we
settled on a longer iteration length of 3 weeks. The team
started with daily standups, and while they found value in the
standups they felt that the nature of their R&D work fit better
with standups every other day. The team adjusted and
continued to deliver in a highly effective manner.

The overall system of systems required managing all of
the uncertainty and even more complexity. The total team
size was such that we did not feel the need for a Scrum of
Scrums model. Instead, we had two ScrumMasters that
covered all of the projects, and essentially had them pair to
cover the overall release. Each ScrumMaster had primary
accountability for a couple of teams, and the other
participated in key Scrum meetings for those projects that
they did not have direct responsibility. In that way both of
them were up on the overall program and knew what cross
team issues needed to be resolved. This model worked quite
well as not only did the cross team communications happen
efficiently, but when one of the ScrumMasters was out we
had the other one help out without missing a beat.

X. HOW DID IT WORK OUT?

The results from the project were impressive. Our
concerted effort on improving quality demonstrated
significant improvement over the prior year. In both cases
we had a 2-3 month beta program with a couple of key
customers. Table III summarizes the results and compares
with the prior year. The improvement in quality was
substantial.

TABLE IV. THE BOTTOM LINE

 2009 2010 Reduction

Defects Found in Beta 222 36 84%

Known Issues at Ship 104 3 97%

XI. CHALLENGES

Although overall things went very well, there were
several challenges that we either had to overcome or live
with.

A. Proprietary Data

We deal with very sensitive customer data. While
customers are willing to share that data with us for our
limited use in testing the software, our agreements generally

do not extend to our offshore partners. This limited some of
what we were able to accomplish with our partners and
required use of synthetic data for much of the testing done by
the offshore teams. While we would have preferred to have
more flexibility here, this was something that we found we
could work with.

B. Time Shift

While the time shift to both Romania and Vietnam
created challenges with communication, in the end the time
shift and overlap in times between teams actually turned out
to work to our benefit. Most of our team was in Houston,
while our petroleum engineering partner was in Bucharest,
Romania and our test automation partner was in Vietnam.
The time shift to Romania is a very manageable 8 hours, and
particularly manageable as our partner was very flexible with
work schedules. We utilized the Romania team to help with
communications with the Vietnam team.

Once we had tests in operation, the Vietnam team would
initiate the automation tests during their day and have a time
overlap with the Romania team during the Romanian
morning. By the afternoon in Romania, the petroleum
engineering team would take a deeper dive into any issues
raised by the automation tests to make sure that we
understood what the issues were. In the end what we got
was a daily automation that ran during Houston nights and
provided reliable status by the time developers arrived the
next morning.

XII. CONCLUSIONS: WHAT DID WE LEARN?

There are a couple of key lessons learned from this
experience.

A. Test Automation is Necessary to Maintain Velocity

Prior to this initiative the team was diligently working
but nonetheless struggling to keep up with quality issues.
Our existing automation testing was invaluable, but we still
relied too much on much manual testing. We also realized
that some additional automation suites could make a big
improvement in our overall productivity. By augmenting our
test automation we were able to find some issues faster and
also have our domain experts spend more time on
exploratory testing.

B. A Testing Strategy Helps to Maximize Efficiency

The team had some good automation and exploratory
testing, but knew they could be better. Rather than just
randomly add more tests, we looked to see which types of
tests would add the most value. For us we found that adding
an additional set of functional tests and automating some of
our GUI smoke tests could pay off quite well.

C. Outsourcing Can Work When Used Judiciously.

We relied heavily on outsourcing partners to get this
work done. While we had some minor challenges in the
beginning, we found that it was quite workable. It won’t
work well if you don’t have the right talent or the right
attitude. We found that even test automation can be
outsourced effectively. The key was the combination of

domain expertise provided by our own team and our
Romanian partner, with the test automation expertise of our
Vietnam partner and the in-house project management that
made this globally distributed team work in our agile
development environment.

D. Treat Outsourcer as a Partner

By focusing on what our partners were good at and
recognizing what we were good at in-house, we were able to
leverage our overall talent. We found qualified petroleum
engineers that were able to be part of our team and make
significant contributions. We found talented testers that
arguably understood GUI test automation better than us. Our
partners wanted us to succeed and we wanted them to
succeed.

E. Cost Effective Global Talent

By sourcing globally we were able to get access to talent
that had valuable skills to fit gaps at a fraction of the cost.
We needed to make an investment to improve the quality and
business conditions would not have enabled us to obtain the
same effort had we sourced locally.

In a prior paper by Little[8], savings were computed by:

e

mc
Savings

1%

Where
e = OUTSOURCE efficiency = Equivalent

INTERNAL days per OUTSOURCE day
m = INTERNAL Management overhead =

INTERNAL days to get 1 OUTSOURCE day
c = OUTSOURCE relative cost = cost per

OUTSOURCE day / Cost per INTERNAL day

Our estimate for these parameters is shown in Table V:

TABLE V. COST SAVINGS

e m c Savings

0.5 0.1 0.20 40%

We found that efficiency (e) started out low while

management overhead (m) started out high. Over time
efficiency has improved while management overhead has
declined. These trends continue.

F. Distributed Teams Can be Effective

Our teams were globally distributed and we certainly had
some overhead associated with that distribution. We aimed
to minimize the overhead of the distribution using a pattern
common to software development – loose coupling and tight
cohesion. We aimed to have locally collocated teams that
had tight cohesion, and recognized that there was coupling
and dependencies across distributed teams. We first sought
to understand those dependencies and then made sure to
monitor and manage the dependencies.

G. Test Automation Does not Replace Exploratory Testing

While test automation is critical to check against
regression defects, we found exploratory testing still to be

critical. Because we were able to automate more tests, we
freed up our domain experts to be able to do more
exploratory testing. Our exploratory testing found more than
70% of the defects.

XIII. ACKNOWLEDGEMENTS

We would like to acknowledge Mark Kilby for providing
valuable shepherding of this experience report. We would
also like to thank the entire Nexus development team for
their dedication to making the product a success.

XIV. REFERENCES

[1] B.K. Coats, G.C. Fleming, J.W. Watts, M. Rame, G.S. Shiralkar, SPE
87913: “A Generalized Wellbore and Surface Facility Model, Fully
Coupled to a Reservoir Simulator,” SPE Reservoir Evaluation &
Engineering, Volume 7, Number 2, 2004, pg 132-142.

[2] B. S. Al-Matar, et. al. , SPE 106069: “Next-Generation Modeling of a
Middle Eastern Multireservoir Complex”, SPE Reservoir Simulation
Symposium, 26-28 February 2007, Houston, Texas, U.S.A.

[3] http://www.exampler.com/old-blog/2003/08/22/#agile-testing-
project-2

[4] L. Crispin and J. Gregory, Agile Testing: A Practical Guide for
Testers and Agile Teams, Addison-Wesley, 2009.

[5] H. Buwalda, “Action Based Testing,” Better Software, Volume 13,
Number 2, March/April 2011.

[6] T. Little, “Context-Adaptive Agility: Managing Complexity and
Uncertainty”, IEEE Software, May/June 2005.

[7] P. Pixton, N. Nickolaisen, T. Little, K. McDonald, “Stand Back and
Deliver: Accelerating Business Agility,” Addison-Wesley, 2009.

[8] T. Little, “Assessing the Cost of Outsourcing: Efficiency,
Effectiveness and Risk,” IEEE EQUITY 2007, March 19-21, 2007,
Amsterdam, Netherlands.

http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2
http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2

