
4 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

■ Optimal release cycle duration (scope/time
trade-off)

■ Optimal project staffing levels
■ Effects of uncertainty

Previous approaches to understanding soft-
ware dynamics and costs include building sys-
tems dynamics models or detailed cost equa-
tions.1,2 Although they can be enlightening,
these models are complex, they focus on cost
rather than value, and they typically don’t con-
sider uncertainty. Other models use net pres-
ent value to focus on value and uncertainty.3,4

My team set out to develop a relatively simple
project dynamics model to use in conjunction
with market sensitivity and economic analysis
to help optimize profitability. Some of our ideas
and results are similar to those of Preston Smith
and Donald Reinertsen, who examined the im-
pact of time-to-market sensitivity.5 However,
our approach is a more detailed model tuned to
software development issues.

The model
Our model features a set of functions and

parameters that can be applied in a spreadsheet.
You can obtain data curves in many ways, in-
cluding using industry data, historical metrics,
or from the team’s subjective assessments.

The curves I present here are of a sample base
case in our commercial-project portfolio. Land-
mark has collected development and testing
duration and effort metrics for its projects from
1995 to 2003. Although I believe the curves’

focus
Value Creationand Capture:
A Model of the Software
Development Process

L
andmark Graphics supplies software and services to the upstream
oil and gas industry. Our software portfolio, which ranges from
exploration and drilling to data management and decision analysis,
includes more than 60 products consisting of over 50 million lines of

source code. For many years, Landmark has been collecting project metrics we
wished to harvest to gain insight into key business questions in three areas:

return on investment

Understanding software development dynamics can help an
organization maximize value delivery. Using functions and
parameters applied in a spreadsheet, this process model facilitates
this understanding by examining value creation and value capture
in the presence of uncertainty.

Todd Little, Landmark Graphics

shapes are representative of most projects, I
don’t intend to generalize a specific equation
across all projects. I also recognize that soft-
ware development depends highly on the indi-
viduals and teams involved. The model incor-
porates this variation to the extent that the
functions should represent the project and the
team involved in the work. Again, I caution
against generalizing, yet so long as the limits
and assumptions are known, I believe the model
provides a basis for solid business decisions.

The parameters and functions that define the
essential model are

■ Staff effectiveness: effective team produc-
tivity versus team size

■ Value created: the software’s assumed value
versus effective development time

■ Rework time: time to test and fix the soft-
ware versus effective development time

■ Value capture: market delay costs versus
time

■ Resources: team size and cost factors

Each of these functions is a curve repre-
senting a given project’s performance. Differ-
ent projects’ behaviors can vary depending on
factors such as product maturity, team experi-
ence, and development process. The base case
in this study is a mature product with an ex-
isting code base and an established team.

Team size
For our model, we define

Effective team productivity is dimensionless,
while productivity can be measured in lines of
code or function points.

Frederick Brooks postulated team-produc-
tivity diminishing returns as the n-squared
problem, referring to the n2 increase in com-
munication channels as you add people to a
project.6 Tarek Abdel-Hamid and Stuart Mad-
nick modeled this with a systems dynamics
model and estimated that the communication
overhead of a 30-person team would be 50
percent.1 However, their model estimates that
communication overhead goes to 100 percent
for a 40-person team, and it predicts a behav-
ior different from that observed with other au-

thors’ productivity data. Samuel Conte and his
colleagues, using lines of code, observed that
average team productivity declines exponen-
tially with team size.7 A reformulation of their
observations gives

Effective team productivity = Team sizeα,

where, for their data, α = 0.5. Capers Jones
uses function points to provide data including
productivity and team size.8 Using this equa-
tion and Jones’s data results in an excellent fit
with α = 0.65, which is the equation we used
for this study. Figure 1 shows α = 0.65 relative
to the curves of Abdel-Hamid, Conte, and
Jones’s data.

Assumed value creation
To assess the developed features’ value, we

use an approach similar to Minimum Mar-
ketable Features—a collection of features re-
quired to derive value from the product.9 As
with MMF, we require that each feature set
has an associated estimated value and effort
cost. We define value as the estimated present
value of the feature if it were delivered imme-
diately. We give costs in effective developer
days, similar to how the planning game in Ex-
treme Programming Explained uses ideal de-
veloper days.10 We also follow XP’s practice of
prioritizing features on the basis of value, al-
though we prioritized using a variant of the
profitability index—the ratio of present value
to cost. Alternative prioritization approaches
should be compatible with the model.11,12 The
result is the base curve in Figure 2. The curve’s
discrete nature is a result of the value materi-
alizing only at the feature set’s completion.
The lowest line depicts poorly prioritized fea-
tures, and the remaining curves represent ran-
dom prioritization.

 =Effective team
productivity

Team size × Average
team productivity

Productivity when
team size = 1

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 4 9

α

α

α

Ef
fe

ct
iv

e
pr

od
uc

tiv
ity

10 20 30
Team size

40 50 60 700

40

35

30

25

20

15

10

5

0

Linear
Abdel-Hamid
Conte
Jones
α = 0.65

Figure 1. Effective
productivity using
different models.

Testing and rework required

The time required for application testing de-
pends on both testing new features and regres-
sion-testing existing features. We’ve recorded
historical data for many of our projects and
found good relationships for mature products,
correlating required rework time to effective
developer days for that release cycle. If a re-
lease’s quality target differs from our collected
data, then we must modify the curve accord-
ingly. We’ve also estimated testing rework for
each feature and added a base amount for re-
gression. The cumulative rework days can be
cross-plotted against the cumulative priori-
tized development days. Both approaches give
similar results. In Figure 3, required regression
testing caused the base case’s steep slope at the
left side of the graph. We’ve observed that test
automation can reduce this overhead for some
projects, as the improved curve shows.

Market delay costs
So far, we’ve assumed that developed mate-

rial has created value; those who make business
decisions are interested in understanding how
to translate that into value captured. In Land-
mark Graphics’ case, we’re interested in soft-
ware that’s being produced for a general mar-
ket. We therefore consider relative market value
to be the fractional value captured as a func-
tion of the software’s release date. As Figure 4
shows, there’s a period of time in which the rel-
ative value drops off simply because of money’s
time value. At some point, competitive threats
occur, and market value declines more rapidly.
In the case of mature products, this period can
be fairly long and the decline relatively flat, as
customers don’t wish to update their application
suite rapidly. For new products, this curve can
drop off more precipitously, particularly if sub-
stantial competition exists in the new market.

Putting it all together
I can now construct the overall model from

these basic components. In addition to the
functions I’ve described, I must define the
number of developers on the project and their
associated costs. Figure 5 shows a flow dia-
gram of the overall model as a series of table
lookups from the parametric curves.

The resulting curves
Figure 6 indicates model results for the base

case. The overall assumed value creation from

5 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Ef
fe

ct
iv

e
re

w
or

k
da

ys

500 1,000
Effective developer days

1,500 2,000 2,500 3,0000

450

400

350

300

250

200

150

100

50

0

Base case
Improved through test automation

Figure 3. Rework time and process improvement’s impact

Re
la

tiv
e

m
ar

ke
t v

al
ue

5 10 15
Total duration (months)

20 25 30 40350

1.0

0.8

0.6

0.4

0.2

0.0

Mature product with
strong barrier to entry
Base case
New product in highly competitive market

Figure 4. Relative market value capture

As
su

m
ed

 p
re

se
nt

 v
al

ue
 c

re
at

ed
 ($

M
)

200 400 600
Effective developer days

Poor prioritization

800 1,000 1,200 2,0001,400 1,600 1,8000

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

Base case
Worst
1
2

Figure 2. Assumed value creation and prioritization’s effect.

the developed features (red curve) multiplied
by the relative-market-value curve gives the
gross value captured curve. This represents the
amount of created value that can be captured
in the marketplace. The shaded area repre-
sents the net present value after adjusting by
cost. The adjusted curve resembles those
shown for general new-product development,6

as both models examine the issues of market
timing on value capture. If we treat this as a
deterministic problem, it’s a simple optimiza-
tion task to search for the maximum NPV to
determine project duration and extract all
other project parameters from the model.

This graph also demonstrates the tension
that can exist in the various organizational
groups focused on assumed value creation or
relative market value. The customer, market-
ing group, or management will be quite cog-
nizant of the relative market value and, as a
result, will wish to drive the project up and to
the left. The development team, on the other
hand, sees that driving the project up and to
the right can increase development’s assumed
value creation. Both parties strive to increase
value, but with different motivations. The
conflict can be particularly frustrating if either
side takes a strong position without under-
standing the overall picture. This model can
help bring both sides to a common under-
standing by looking to the NPV.

Assessing model sensitivity
One objective was to develop a method for

determining the optimal staff size for projects.
As Figure 7 demonstrates, we obtain the max-
imum NPV for the base case project with a

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 5 1

Number of
effective

developers

Number of
effective

developer days
Value

created

Testing days
required

Gross value
capture

Net present
value

Total
duration

Number of
developers

Development
duration

Relative
market value

Costs

Figure 5. Flow diagram of Landmark Graphics’ software development process model.

In the equations below, let fn represent the function underlying the graph in Figure N.

• Start with Number of developers.
Number of effective developers = f1(Number of developers)

• Loop over Development duration, for example in increments of 20 days.
Effective developer days = Number of effective developers × Development duration
Assumed value created = f2(Effective developer days)
Effective rework days = f3(Effective developer days)
Rework duration = Effective rework days / Number of effective developers
Total duration = Development duration + Rework duration
Relative market value = f4(Total duration)
Gross value capture = Relative market value × Assumed value created
Net present value = Gross value capture − Present value of costs

• Repeat for more values of Development duration.
• Plot Net present value as a function of Total duration.

Gross value captured

Va
lu

e
($

M
)

Re
la

tiv
e

m
ar

ke
t v

al
ue

5 10 15
Total duration (months)

20 25 30 350

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

1.0

0.8

0.6

0.4

0.2

0.0

Cost

Assumed
value creation

Relative
market value

Net present
value

Figure 6. Model results for the base case.

Ne
t p

re
se

nt
 v

al
ue

 ($
M

)

5
Total duration (months)

10 15 20 250

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

4
Team size

6
8

10

Figure 7. Using the model to optimize team size.

team of six. Note that the optimal NPV doesn’t
vary greatly for different staff sizes, although
the corresponding release date and delivered
feature sets are different.

We can also change the curves’ assump-
tions and consider some what-if scenarios,
such as the economic benefit of introducing
pair programming. For our purposes, we want
to compare a project with the same team size
and same output-quality objectives; this differs
slightly from other authors’ approaches.13,14

We compared our base case of six developers
to three paired developers.

The model parameters come from Alistair
Cockburn and Laurie Williams’s research, who
reported that paired development takes 15 per-
cent more effort and the defect rate is 60 percent
lower.15 We made the optimistic assumption that
fewer defects would cut rework time to 40 per-
cent. As Figure 8 shows, with these assumptions,
the base case and red pair curves have nearly
identical optimal NPV of about $1 million.

While further reviewing the assumptions,
we found that Cockburn and Williams’s study
compared one-person teams to two-person
teams. We looked at team productivity earlier,
and, for α = 0.65, we have 20.65 = 1.57, while
2/1.15 = 1.74. It’s possible that pairing’s over-
head is similar or even less than that observed
in general team dynamics. Pair programming
advocates claim the overall team is more ef-
fective as individuals rotate on different pair-
ing assignments. If this is the case, pairing’s
impact might be a higher α. The green curve in
Figure 8 shows α = 0.75 along with the 40
percent factor on rework time. This could be
an area of further research.

Uncertainty
Things would be easy if software develop-

ment were predictable and could be modeled
accordingly. However, the reality is that uncer-
tainty is a natural part of the software devel-
opment process. The Standish CHAOS Report16

indicates that only 20 percent of projects are
finished on time relative to their original plan.
We’ve quantified some of the uncertainty, and
in Figure 9 we plot the cumulative-probability
distribution of the actual/estimate ratio for our
data and compare it to Tom DeMarco’s data.17

We use duration data, while DeMarco reported
effort data. The results are remarkably similar
and clearly show a log-normal distribution
with about a 10 to 20 percent probability of

5 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Ne
t p

re
se

nt
 v

al
ue

 ($
M

)

2 4 6
Total duration (months)

8 10 12 201614 180

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Pair: = 0.75, 40% reworkα
Base case without pairing
Pair: 115% dev., 40% rework

Figure 8. Comparing the base case to a pair-programming case.

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 d

is
tri

bu
tio

n

Ratio of actual/estimate
1.0 10.00.1

DeMarco log-normal fit
DeMarco data
Landmark log-normal fit
Landmark data

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 9. Uncertainty in project estimation.

Ne
t p

re
se

nt
 v

al
ue

 ($
M

)

5.0 10.0 15.0
Total duration (months)

20.0 25.0 30.0 35.00.0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

C: Duration – 1/2(), value + 1/2()
B: Base case

Target: best possible scenario
 if everything went perfectly

A: Duration + 1/2(), value – 1/2()

Plan: expected scope for the release
 at the optimal time that it can be released

Contract: minimum scope at the latest
date that it can be released

α α

α α

Figure 10. Net present value uncertainty.

meeting the original target, about a 50 percent
chance of requiring less than two times the
original target, and a 90 percent chance of re-
quiring less than four times the original target.

While uncertainty can exist in all the param-
eters, for most of our projects, we believe the
uncertainties in value and duration estimation
have the greatest influence on the overall proj-
ect NPV uncertainty. For a quick view of the
uncertainty range, we find it useful to construct
three cases for comparison using the standard
deviation (σ) for each distribution. Our distri-
bution is log-normal, so +/−σ is equivalent to
a multiplication scale factor: +1/2(σ) is a fac-
tor of 1.25, while −1/2(σ) is a factor of 1/1.25
= 0.80. Figure 10 shows the NPV as a function
of total duration for three cases:

A. Duration +1/2(σ), value −1/2(σ)
B. Base case with median values
C. Duration −1/2(σ), value +1/2(σ)

Given that this uncertainty must be man-
aged during the life of the project, we’ve taken
an approach similar to Kent Beck and Dave
Cleal’s idea of optional scope contracts.18 We
map the three scenarios as

A. Contract
B. Plan
C. Target

In the Contract, Plan, Target approach, the
target, or best possible scenario, gives the most
scope at the earliest date possible. This is similar
to what Tom DeMarco and Timothy Lister
called the “nano-percent date.”19 Teams should
have little difficulty establishing targets, since
they’re based on the assumption that nothing
unexpected will happen. The other extreme is
the contract. This is defined as the minimum
scope at the latest date that can be tolerated. If
the project were to have any less scope or be
delivered any later, it would be considered a
failure. We’ve experienced a cultural resistance
to establishing this project constraint, with proj-
ect stakeholders unwilling to accept the range
of uncertainty. We’ve used the model’s results
to help stakeholders understand this range.

By establishing the contract and the project’s
minimum success criteria, the project team un-
derstands what they must absolutely deliver. As
long as the stakeholders understand the prob-
ability of making the contract, other programs

such as a marketing rollout can also be planned
accordingly. Just making the relatively quick
assessment of these three scenarios provides a
wealth of information with which you can make
rational investment and planning decisions.

W hile this model is quite simple, it
might be more complex than some
organizations require and less

complex than others would prefer. To be truly
useful, the model should be tuned to the or-
ganization and include some subjective assess-
ment. The process of creating the model pa-
rameters generates conversations about project
assumptions. These conversations can help
stakeholders understand the project drivers
and success criteria that will help maximize
business value.

We’ve begun running projects using the
Contract, Plan, Target approach, and this has
significantly reduced our delivery uncertainty.
The development team understands what they
must absolutely deliver, and the marketing or-
ganization can feel confident they’ll have a re-
lease with content sufficient enough to roll out
to customers.

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 5 3

About the Author

Todd
Little is a
senior devel-
opment man-
ager for Land-
mark Graphics.
His interests
include agile
software de-

velopment, and he’s the conference chair
for the 2004 Agile Development Confer-
ence. He received his MS in petroleum en-
gineering from the University of Houston.
He’s a member of the Agile Alliance, the
IEEE, and the Society of Petroleum Engi-
neers. He is also a registered Professional
Engineer in the state of Texas. Contact
him at tlittle@lgc.com.

References
1. T. Abdel-Hamid and S. Madnick, Software Project Dynamics, Prentice Hall, 1991.
2. B.W. Boehm, Software Cost Estimation with COCOMO II, Prentice Hall, 2000.
3. H. Erdogmus, “Valuation of Learning Options in Software Development under Private and

Market Risk,” Eng. Economist, vol. 47, no. 3, 2002, pp. 308–353.
4. H. Erdogmus, “Comparative Evaluation of Software Development Strategies Based on Net

Present Value,” Int’l Workshop Economics-Driven Software Eng. Research, 1999.
5. P.G. Smith and D.G. Reinertsen, Developing Products in Half the Time: New Rules, New

Tools, 2nd ed., John Wiley & Sons, 1997.
6. F.P. Brooks Jr., The Mythical Man-Month, Addison-Wesley, 1975.
7. S.D. Conte, H. Dunsmore, and V.Y. Shen, Software Engineering Metrics and Models,

Benjamin/Cummings, 1986.
8. C. Jones, Software Assessments, Benchmarks, and Best Practices, Addison-Wesley, 2000.
9. M. Denne and J. Cleland-Huang, Software by Numbers: Low-Risk, High-Return Develop-

ment, Prentice Hall, 2003.
10. K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.
11. K. Wiegers, “First Things First: Prioritizing Requirements,” Software Development, vol. 7,

no. 9, Sept. 1999, pp. 48–53.
12. B. Nejmeh and I. Thomas, “Business-Driven Product Planning Using Feature Vectors and In-

crements,” IEEE Software, vol. 19, no. 6, 2002, pp. 34–42.
13. H. Erdogmus and L. Williams, “The Economics of Software Development by Pair Program-

mers,” Eng. Economist, vol. 48, no. 4, 2003, pp. 283–319.
14. F. Padberg and M. Müller, “Analyzing the Cost and Benefit of Pair Programming,” Proc. 9th

Int’l Software Metrics Symp. (Metrics 03), IEEE CS Press, 2003, pp. 166–178.
15. A. Cockburn and L. Williams, “The Costs and Benefits of Pair Programming,” Extreme Pro-

gramming Examined, G. Succi and M. Marchesi, eds., Addison-Wesley, 2001, pp. 223–243.
16. The CHAOS Report, The Standish Group Int’l, 1998.
17. T. DeMarco, Controlling Software Projects, Prentice Hall, 1982.
18. K. Beck and D. Cleal, “Optional Scope Contracts,” tech. report, 1999; www.xprogramming.

com/ftp/Optional+scope+contracts.pdf.
19. T. DeMarco and T. Lister, Waltzing with Bears, Dorset House, 2003.

