
Agility, Uncertainty, and Software Project Estimation
Todd Little, Landmark Graphics

Summary

Prior studies in software development project estimation have demonstrated large
variations in the estimated versus actual result. This paper examines these variations by
analyzing three years of historical project data representing 120 “for market” projects
developed by a market-leading oil and gas software company. The study reveals the
following findings, some of which go against common industry beliefs:

• The ratio of actual over estimate follows a log-normal distribution.
• The initial project estimate tends to be a target with only about a 10-20% chance

of being met.
• The median project comes in at 75% over the target, and the average (mean)

project comes in at 100% over the target.
• To have 90% confidence, the project estimate would have needed to be 3-4 times

greater than the target.
• This behavior and uncertainty range is nearly identical at all stages in the project

lifecycle, in conflict with the “cone of uncertainty.”
• EQF (Estimation Quality Factor, a project estimation metric proposed by

DeMarco) also follows a log-normal distribution.

Successful commercial software companies developing software “for market” seem to
follow inherently several key principles of Agile Software Development; one element in
particular is “responding to change over following a plan” in order to ship working
software to meet the most current needs of customers. These guiding principles are both
boon and bane; following them can help make commercial software companies
successful, yet they also accentuate the uncertain nature of software development.

1

Agility, Uncertainty, and Software Project Estimation
Todd Little, Landmark Graphics

Abstract

Prior studies in software development project estimation have demonstrated large
variations in the estimated versus actual result. This paper examines these variations by
analyzing three years of historical project data representing 120 “for market” projects
developed by a market-leading oil and gas software company. These projects follow
several key elements of the Agile Software manifesto. One element in particular is
“responding to change over following a plan” in order to ship working software to meet
the most current needs of customers. The study reveals the following findings:
(1) estimation accuracy follows a log-normal distribution, (2) our initial estimates are
targets with only a small chance of being met, (3) the range between the target and an
estimate with 90% confidence is about four times greater, and (4) this behavior and
uncertainty range is nearly identical at all stages in the project lifecycle, in conflict with
the “cone of uncertainty” presented by Boehm.

Introduction

Software development project estimation has long been a difficult problem for our
industry. Many prior studies have shown that on the aggregate, software projects are
invariably late and/or over budget or fail to deliver altogether1,2,3,4,5. Most companies do
not cope well with uncertainty of this nature and as a result conclude that something must
be wrong and should therefore be “fixed.” While it may be possible to improve on
software project estimation and to control the project to meet the estimation, an
alternative perspective suggests that uncertainty is a natural property of the software
development process. This may imply that control alone is futile and that a more
productive solution is to embrace change, acknowledge uncertainty, and realize that value
optimization is the objective, not project control. Agile methodologies recognize the
value of plans and project controls, but emphasize the delivery of working software to
meet the needs of customers at the time that they receive it.

Background of the Project Data

Landmark Graphics (www.lgc.com , a subsidiary of Halliburton www.halliburton.com) is
the leading vendor of commercial software solutions for the oil and gas exploration and
production market. Landmark has grown largely via acquisition, and our current software
portfolio includes over 60 products consisting of over 100 million lines of source code.
Over the past three years Landmark has been collecting data about all of our software
development projects on a weekly basis. We did not have any specific process
improvement plan in mind during this time, thus the data collected is relatively unbiased.

2

http://www.lgc.com/
http://www.halliburton.com/

There were 570 total projects in the portfolio. Of these 570 projects, 120 projects were
commercial releases for the general oil and gas market. The remainder included currently
active projects, internal projects, and non-commercial releases. For the purpose of this
study, only the 120 commercial releases were considered.

For each active project, the Project Manager recorded on a weekly basis a number of
aspects of the project, including the status of the project, the current estimated delivery
date, and the nominal phase of the project. Landmark did not follow any formal software
development methodology, although several projects followed some form of iterative
development, and many project teams followed guidelines from the Microsoft Solution
Framework (MSF)6. For recording purposes, the four phases used were the four MSF
phases: Envisioning, Planning, Developing, and Stabilizing. On projects that utilized
iterative development, the Envisioning and Planning phases were usually quite short, and
the iterations were all considered to be the Development phase regardless of whether they
were planning, developing, or stabilizing that iteration. Typically this was followed by a
final Stabilization phase. While Landmark did not follow any formal methodology,
nearly all of the 120 projects under consideration followed most of the principles of Agile
Software Development.

Agile Software Development

Agile Software Development follows four value principles as set out in the Agile
Manifesto7:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

While the Agile Software Development movement is new, many of these principles are
not. In the case of software developed “for market,” the market is only interested in
working software that meets its needs at the time of delivery. Organizations that try to
control “for market” software projects by clamping down on change risk missing an
evolving market. It is not really possible to negotiate a contract with the “market,” but it
is possible to engage customers in collaboration. And, the market is certainly far more
interested in working software than in comprehensive documentation. As for the first
element of the manifesto, the market doesn’t really care one way or the other as long as
its needs get met.

It is the author’s belief that most successful software developed “for market” follows
most if not all of the principles of the Agile Manifesto. Even many of our non-
commercial projects followed these principles. What separates the commercial releases is
that there is often limited degrees of freedom. When delivering software for a single
customer, it may be possible to take liberties with scope or quality in order to meet a
deadline; but when delivering for the mass market, taking many liberties could quickly
result in loss of market share.

3

Actual versus Estimate

Figure 1 shows data extracted from the Landmark project database history. The x-axis
shows the Initial Estimate of project duration, and the y-axis shows the Actual duration
that the project required. The solid line shows the ideal case where the actual equals the
estimate. It is easy to see that there is quite a scatter to the data, and that by and large the
Actual duration was longer than the initial estimate, in some cases significantly longer.

Figure 1: Initial Estimate vs. Actual Project Duration

Initial Estimate

A
ct

ua
l

Landmark Data

Ideal

The plot in Figure 2 shows published data from DeMarco3. There is a slight difference
from our data in that DeMarco is plotting Estimated Effort versus Actual Effort, but the
scatter is quite similar. The blue line is at a slope of 2.0, which seems to validate the old
adage “take the initial estimate and double it.”

Figure 2: DeMarco Project Estimation Data

Estimated Effort

A
ct

ua
l E

ffo
rt

Actual

2X

Ideal

Figure 3 shows a plot of cumulative distribution of DeMarco’s data and Landmark’s data,
plotting the Ratio of Actual/Estimate on a log scale. The magenta squares represent
DeMarco’s raw data and the blue plusses represent Landmark’s raw data, while the red
curve and the blue curve represent a log-normal distribution curve fit through the
respective data points.

4

Figure 3: Cumulative Distribution Function of Actual/Estimate Ratio

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 1 10

Ratio of Actual/Estimate

C
D

F
Pr

ob
ab

ili
ty

DeMarco Data

DeMarco Log-Normal

Landmark Data

Landmark Log-Normal

Figure 4: Probability Distribution Curve of Actual/Estimated

0 1 2 3 4 5 6 7 8

(Actual/Estimated)

Fr
eq

ue
nc

y

DeMarco

Landmark

Median: 1.75 Mean: 2.0

Figure 4 shows the same data displayed as a prob
plotted on a Cartesian axis, the log-normal curve
It is quickly observed that there is more area to th
implies that the average, mean, or expected value
mean is approximately 2.0, while the median is a

Landmark’s data is remarkably similar to the data
demonstrate quite clearly that the data follows a l
be validity to DeMarco’s observed definition: “A
prediction that has a non-zero probability of comi
by-which-you-can’t-prove-you-won’t-be-finished
say that a development target is an estimate with
of interest is the range between the p10 and the p
meaning that if we really needed to be conservati
the initial estimate; we may need to nearly quadru

One of the advantages of having 120 data points i
the data and still have enough data to view a stati
through a number of acquisitions in five developm
separate business areas. Would the data for just o
one business unit show a different trend which m
improvements that could be utilized by the rest of
demonstrate this. We have sliced and diced the da
sufficient samples remain, the curve looks essenti
Furthermore, we looked at those projects that did

5

A cumulative distribution plot shows on
the y-axis the percentage of data samples
that have a value less than the value of
the x-axis, e.g. 20% of the projects from
DeMarco’s data came in under the initial
estimate (ratio=1.0). A normal
distribution has a frequency or
probability distribution in the shape of
the classic bell curve. When plotted as a
cumulative distribution function it takes
on the integral of the bell curve and
shows up as an S-curve. A log-normal
distribution is similar to a normal
distribution in that the frequency
distribution of the log of the data is
normal. In the world of uncertainty, it is
common to report values at various
probability confidences, particularly p10,
p50, and p90 to represent 10%, 50%, and
90% confidence respectively.

ability distribution curve. Since this is
shape is observed as a skew to the right.
e right of the median (p50), which
 is greater than the p50. In our case the
bout 1.75.

 collected by DeMarco, and both
og-normal distribution. There seems to
n estimate is the most optimistic
ng true…or... what’s-the-earliest-date-
?”3 A variation on this definition is to
about a 10% chance of being met. Also
90. For our data, the p90 is up at 3.25,
ve, it’s not just good enough to double
ple it!

s that it offers the ability to sub-sample
stical trend. Landmark has grown

ent centers serving four nominally
ne city, just one former company, or just
ight lead to potential process
 the organization? The data did not
ta in numerous ways, but as long as
ally identical to the full sample.
 “well” at estimating to see if they used

“better practices” than the other projects. Since we have three years of data to analyze,
most of these project teams released multiple versions of the software product using
essentially the same teams and processes. What we found is that many of the project
teams whose estimate came close for one project ended up on the opposite end of the
spectrum on subsequent projects.

Estimate as a function of project phase

The conventional wisdom is that estimation gets better as the project progresses. This was
first stated by Boehm1, and subsequently stated by many authors, most notably
McConnell4. Figure 5 shows the cone of uncertainty reported by Boehm. At the
Feasibility state the uncertainty band is 16X (from 0.25 to 4.0), while at Concept it has
narrowed to 4X, and by Requirements it has reduced to 2.25X. This seems very intuitive.
.

0.1

1

10

Feasibility Concept
Operation

Requirements
Spec

Product
Design

Detail
Spec

Accepted
Software

Minimum
Maximum

2

0.5

Figure 5: Cone of Uncertainty from Boehm

Figure 6 shows Landmark’s observed data plotted with Actual remaining duration against
Estimated remaining duration at the start of each phase. While the data points get closer
to the origin, the scatter from the ideal does not seem to improve. What happened to the
increased accuracy as we got further into the project?
 Figure 6: Actual versus Estimate by Project Phase

Estimate from start of phase

A
ct

ua
l f

ro
m

 s
ta

rt
of

 p
ha

se

From Start
Start Plan
Start Dev
Start Stab
Ideal

This same data is plotted as cumulative distributions in Figure 7. These CDF curves are
nearly identical for each phase. Interestingly, we again see that our most up-to-date target
is about a p10. But perhaps more interesting is that we do not see a narrowing of the

6

bands as predicted by the cone of uncertainty. Instead, the uncertainty bands remain
constant, and at all stages of the project the range of uncertainty is about a factor of four
between the p10 and the p90. Every CDF curve that we have extracted be it from
DeMarco’s data, Landmark’s data, or some subsample of Landmark’s data exhibits this
same factor of four between the p10 and the p90; perhaps we are seeing an innate
property of software project estimation.

Figure 7: Cumulative Distribution by Project Phase

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 1 10

Ratio of Actual/Estimate for the Phase

C
um

ul
at

iv
e

D
is

tr
ub

ut
io

n

Initial

Start Plan

Start Dev

Start Stab

Log Normal

Analysis of the findings

The data clearly indicates that Landmark’s software project estimation follows a log-
normal distribution with an uncertainty range between p10 and p90 of roughly a factor of
four. This pattern is nearly identical to that found in DeMarco’s data. Additionally, this
uncertainty range remains constant over the life of the project, counter to the cone of
uncertainty.

It is not a new finding that software estimation follows a log-normal distribution, yet it is
still common to see estimates of espoused high confidence of +/-2 months, or +/-20%.
Ranges that are given as plus or minus a constant time or constant percent are missing the
exponential nature of the problem. Furthermore, the ranges rarely cover the real
uncertainty. If typical project estimation follows the log-normal pattern the we observed,
we should be estimating projects at +100%/-50%.

There may be nothing wrong with establishing targets by the “what’s-the-earliest-date-
by-which-you-can’t-prove-you-won’t-be-finished” method. That is probably a good
starting point for a p10 estimate. It would be foolish to plan a business around a p10
estimate, but if the pattern that we observed is typical of most software development, then
the full range of uncertainty could be defined by a p50 estimate of roughly twice the p10,
and a p90 estimate of roughly four times the p10.

Managing the Uncertainty

Certainly it must be possible to reduce this unacceptable range of uncertainty?
Traditional project management approaches, several of which are based on a strong belief
in the cone of uncertainty, advocate stronger project control and greater planning. I

7

believe that this frequently attempts to solve the wrong goal. It may be meaningless to
ship on time, to spec, within budget, if a competitor is shipping software which has a
greater value to the market. In that case the competitor will win nearly every time, and
the prize for “good” project management might be going out of business.

Landmark’s measure of success over these three years has much more to do with
customer satisfaction and market share than with meeting knowingly aggressive targets.
During these three years customer satisfaction has consistently been rated very high and
has steadily increased each year. Market share continues to grow as well.

Nonetheless, there are things we can do to try to reduce and to manage our uncertainty.
We can look to the Blackjack table for some ideas of coping with uncertainty. The
Blackjack player is constantly faced with uncertainty. Various players cope with this
uncertainty in differing ways. The novice plays with a superficial understanding of the
game, and unwittingly believes he has played well if he gets lucky and comes out ahead.
The professional understands the nuances of the game and uses uncertainty to his
advantage. By counting cards he is able to understand when the odds are in his favor and
thus increase his odds of winning. Yet despite using skill to turn the uncertainty to his
favor, there is still uncertainty, and even the best Blackjack players will have bad days.

Agile methods take an approach similar to the Blackjack player. They acknowledge the
presence of uncertainty and adapt to the situation rather than by trying to control the
situation to meet the plan. Similar to counting cards, most Agile methodologies rely
heavily on continuous feedback, particularly from customers or customer representatives.
Just as with Blackjack, the uncertainty is not eliminated, but even a slight improvement
provides a competitive edge.

References:

1. Boehm, Barry W, Software Engineering Economics, Prentice-Hall, 1981
2. Boehm, Barry W, Software Cost Estimation with COCOMO II, Prentice-Hall,

2000
3. DeMarco, Tom, Controlling Software Projects, Prentice-Hall, 1982
4. McConnell, Steve, Rapid Development – Taming Wild Software Schedules,

Microsoft Press, 1996
5. McConnell, Steve, Software Project Survival Guide, Microsoft Press, 1998
6. Microsoft Solutions Framework, http://www.microsoft.com/msf/
7. Cusumano, Michael A. and Selby, Richard W., Microsoft Secrets,
8. The Agile Manifesto, http://agilemanifesto.org

8

Appendix A
Estimation Quality Factor

The Estimation Quality
Factor (EQF) is a tool that
DeMarco3 proposed for
measuring an o
ability to adjust their proj
estimate over the project
history. Figure 8 shows a
graphical explanation of
EQF. At the beginning of a
project, there is an initial
estimate. Over time that
estimate may be revised up
or down (black line

between the blue area and the green area). At project completion, we know the actual
value. The variation of the estimate from the actual integrated over time is the area shown
in green. The blue area is the total under the Actual curve, or Actual value * End
Duration. The EQF is the Blue Area / Green Area. The reciprocal of this, or Green/Blue,
is the relative error of the estimate.

Elapsed Time

Va
lu

e
to

 b
e

Es
tim

at
ed

Actual Value

Initial

Actual
End

EQF = Blue Area
Green Area

Figure 8: Estimation Quality Factor (EQF)

rganization’s
ect

When the estimated quantity is schedule/duration, then the worst one should do would be
to guess that it will ship by the end of the day, and make that assumption each day until
the product ships. The green area would then be a triangle, the blue area a square, and the
EQF = 2.0. Since 2.0 is the lower limit for EQF, it makes sense to plot the value of EQF-
2.0. This is exactly what is shown in Figure 9, a cumulative distribution function of EQF
for all of our projects. The data fits well with a log-normal distribution curve through
EQF-2.0. Approximately 10% of Landmark’s projects had EQF’s lower than 2.8, half the
projects had EQF’s less than the median of 4.8, and 90% of the projects had EQF’s lower
than 11.7. In this case the log-normal distribution works in our favor, as the mean is
higher than the median. These results compare to DeMarco’s reports of a median value of
3.8 to 4.0.

Figure 9: Estimation Quality Factor Cumulative
Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

EQF

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Landmark Data

Log-Normal Curve

9

	Agility, Uncertainty, and Software Project Estimation
	Summary
	Agility, Uncertainty, and Software Project Estimation
	Todd Little, Landmark Graphics
	Abstract
	Background of the Project Data
	Managing the Uncertainty

