
Adaptive Agility - Managing Complexity and Uncertainty

Todd Little, Forrest Greene, Tessy Phillips, Rex Pilger and Robert Poldervaart
Landmark Graphics

tlittle@lgc.com

Abstract

To maximize the velocity of business value delivery,
Alistair Cockburn talks of having a process that is
“barely sufficient.” At Landmark Graphics we developed
some guidelines as to what "barely sufficient" means for
our various software projects. We examined over 60
projects and observed two primary attributes that
influenced the type of process used: complexity and
uncertainty. We provide a scoring model for plotting
projects onto a four quadrant graph, which we use to
categorize projects into dogs--simple projects with low
uncertainty, colts--simple projects with high uncertainty,
cows--complex projects with low uncertainty, or bulls--
complex projects with high uncertainty. We adapt our
agile process from a core set of barely sufficient practices
that all projects use and add processes and practices
according to a project's profile. One key benefit of this
approach has been identifying project drivers and
providing early guidance to project teams so that they
can start with a process that is close to appropriate.

1. Introduction
Agile Software Development has become increasingly
popular among development teams looking to shed
unnecessary process overhead in order to maximize the
velocity of business value delivery. Alistair Cockburn1
talks of having a process that is “barely sufficient,” and
Jim Highsmith2 suggests something "a little bit less than
just enough." However, it is a challenge to understand
just what is “sufficient” for any given project.
At Landmark Graphics we have experienced working
with a number of different software practices and
processes and have over the last several years begun to
better comprehend some of the guidelines that define
“barely sufficient” for our software projects. One thing
that has become quite apparent is that what is “barely
sufficient” for one project may be insufficient for another,
or overhead for yet another. When looking at our project
history, we observed two primary attributes that
influenced the type of process used: complexity and
uncertainty. Complexity includes project composition
such as team size and criticality, while uncertainty
includes both market and technical uncertainty. To better
quantify the complexity and uncertainty, we came up with
a scoring model and plot the results for each project on a

four quadrant graph. As is tradition, we used animal
names to represent the four quadrants:

• Dogs – Simple projects with low uncertainty
• Colts – Simple projects with high uncertainty
• Cows – Complex projects with low uncertainty
• Bulls – Complex projects with high uncertainty

We developed a "barely sufficient" process for any given
project based on a core set of common practices.
Depending on complexity and uncertainty, additional
practices are recommended. This did not involve
significant change for us as most projects had already
naturally taken on this emergent behavior, although in
several cases they did not start out that way. One benefit
of this approach has been identifying these project drivers
and providing earlier guidance to project teams so that
they can start with a process that is close to appropriate.

2. Company Background
Landmark Graphics is the leading supplier of software
and services to the upstream oil and gas industry. Our
software portfolio, which ranges from exploration and
drilling to data management and decision analysis,
includes more than 60 products consisting of over 50
million lines of source code. We develop and maintain
this product suite with a little over 200 software
developers and a total R&D staff of about 400, including
domain specialists, testers, writers and program
managers. A key business value of our application suite
comes from the integration of these products through a
common data model with over 800 tables, 12 major
entities, and 90 data types. We release our products on a
regular basis, with release cycles varying between 3
months and 18 months.
Our products are graphical, highly interactive and some
are computationally intensive. Despite the fact that some
products are 20+ years old, it has been critical for us to
ensure that they contain the latest geoscience and
engineering technology. This has required that we have
many domain specialists (geophysicists, geologists,
petroleum engineers, mathematicians) involved in
developing these products. In many cases the developers
are domain specialists themselves, while in other cases we
are able to team up domain specialists with computer
scientists.
Many of our products came through acquisitions over the
past 20 years and have been subsequently retrofitted into

our integrated product suite. Newer products have been
developed with integration in mind. One of the
complications from the acquisitions is that we have
geographically dispersed development teams with 5
primary development centers in Houston, Austin, Denver,
Calgary and Stavanger. We have also been utilizing an
offshore development center in Islamabad, Pakistan.
Our first foray into synchronized integration began in
1995 and concluded with the industry’s first such product
offering in 1997. This was enormously successful, but
had its challenges. Coordinating multiple product teams
in multiple geographic locations turned out to be quite
difficult. Fortunately the integration vision permeated the
company and product teams did what they needed in
order to ship the product suite. Since 1997 we have
continued to ship both integrated synchronous releases
and individual product updates. Beyond the coordination
challenges, there are other considerations. Individual
product teams have different market needs and must
remain technically competitive, yet the overall market
need for integration is quite compelling.

3. Landmark’s Development Process
As Landmark grew through acquisition, it likewise
acquired a number of different software development
processes. As most of the acquisitions were small,
relatively young companies, there was minimal process
definition in place. These companies were quite
successful in developing their individual products and
most of the acquisitions were of industry leading products
within their domain. While these products were
individually successful, Landmark’s value proposition
was in creating integrated solutions utilizing these best of
class applications. This required modifying each of the
applications in order to integrate properly with the full
Landmark suite of applications.
To better support developing integrated products,
Landmark sought out a standardized development process
framework that would provide consistency across product
teams. One of the product teams had been exploring the
Microsoft Solutions Framework (MSF)3,4 milestone-
based-iterative development framework as early as 1995
and it looked to fit our needs quite well. About this time,
Landmark set out to deliver its first synchronous release
with all products on a common datamodel and a common
install. By 1997 we began to encourage teams to utilize
MSF, however teams were not required to follow any
particular process. By 1999 the company believed so
strongly in MSF that there was a re-organization in order
to align with the MSF functional team roles.
What happened next is a somewhat predictable aspect of
human dynamics. Some people looked to MSF and chose
to interpret it as a rigorous definition of a waterfall
process. It is our opinion that MSF is far from a waterfall
solution and is much more aligned with agile

development. What is interesting is that the waterfall
interpretation came from two different types of people:
those that believed that what Landmark needed was a
rigorous waterfall process, and those that would do
anything to oppose a rigorous waterfall process. It is
possible that the opposition arose due to the vocal
strength of the waterfall advocates. Debates aside, teams
nominally continued as they had been and shipped
products. Overall, the use of MSF was effective in
establishing a core vocabulary and a set of core practices
that most teams utilized. Some teams followed more of
the MSF framework, while others started to experiment
with other agile methods such as XP.
By 2002 a new management team was concerned that
MSF was too heavyweight and was slowing down the
development process. We suspect that this perception was
mostly a result of the strong vocal presence of the former
waterfall advocates. Nonetheless, it was an opportunity to
fine-tune our development process.
Murray Roth, the new Executive Vice President of R&D
coined the new acronym for the development process:
RAPID: “Robust Adaptable Process for Innovative
Development.” The authors, along with sponsor Karl
Zachry, took on the task to define this new process.
Our team of senior functional managers and project
managers spent some time assessing what teams were
doing, what was working and why. Meanwhile, we had
been following the evolution of the agile community and
found ourselves aligned with Highsmith’s Adaptive
Software Development2 and Cockburn’s Crystal1
methods. We particularly liked the meta-methodology of
Crystal, as we knew that we had issues of scale that
needed to be addressed. While we liked the Crystal
framework, we felt that there were more project attributes
that influenced the type of agile approach to be used than
spelled out in Crystal. At the time that we were doing this
assessment, the work of Boehm and Turner5 had not yet
been published. Subsequently we did modify one of our
attributes (Team Capacity) based on their work. Our
attributes include something similar to all of their
attributes except for organizational tolerance which was
irrelevant since we were only looking at one organization.
Once we had the list of attributes that we thought were
influencing project dynamics, we started to look for
commonality. Our objective was to have something that
was simple to assess yet provide useful information. In
other words we were looking for a “barely sufficient”
solution for helping us identify a “barely sufficient”
process for our projects. We recognized that
fundamentally the attributes grouped into two primary
concerns: complexity and uncertainty. Using these
attributes we generated a quick survey (see Tables 1 and
2) that projects teams could use to assess their project.

4. Complexity Drivers
The first set of attributes that we identified we grouped
under the category of complexity. The complexity of a
project is a characteristic of the project structure. We
developed a system to score each project’s complexity
based on the following attributes:

• Team Size
• Mission Critical
• Team Location
• Team Maturity
• Domain knowledge gaps
• Dependencies

4.1. Team Size
In Cockburn’s Crystal methods1, team size is used in the
determination of Crystal “color”, with darker colors
requiring additional process ceremony. In a very similar
fashion, we see team size as a major contributor to the
project complexity.

4.2. Mission/Safety Critical
Also in the Crystal methods, mission criticality or project
importance is used to determine the type of development
methodology. If there are lives or essential moneys or
lives that are at risk with the project, it must be treated
differently than if the only cost of failure is the
investment in the project. We take a similar view,
although for our approach we view the importance of the
project and what is at stake as one of the indicators of
complexity.

4.3. Team Location
Everyone in the same room enables high bandwidth
communication amongst the project team. A vastly
distributed team or one in which a significant portion of

the team is in a multi-hour time zone shift can add to the
project complexity. This can be a difficult attribute to
assess since a team that has one or a few dispersed
members may not drastically increase its complexity. We
have advised teams to use their judgment on this
assessment.

4.4. Team Capacity
An established team of experts that has been working
together for a number of years on incremental
enhancements to a product line can almost anticipate what
other team members are likely to need and do. This is
contrasted with a brand new team of relative novices. In
many ways this attribute is similar to the Cockburn Shu-
Ha-Ri Level utilized by Boehm and Turner5.

4.5. Domain knowledge gaps
Landmark’s products include leading edge technologies
used by specialists in the oil and gas exploration and
production domain. It is critical that the product team
have full time access to the domain specialists to resolve
ambiguity and produce the desired product. We have
found that this is greatly simplified when the developers
are domain specialists themselves, and much more
complex when access to domain knowledge is limited.

4.6. Dependencies
This attribute is a measure of the degree to which the
project team is dependent upon 3rd parties or upon other
projects within the company. In general, more
dependencies will increase project complexity.
Established 3rd party dependencies may be given reduced
weight if the team has a consistent track record of
working with a stable version.

5. Uncertainty Drivers

Table 1. Complexity Attributes, with range from low (left) to highly complex (right)
Attribute 1 3 5 7 10

Team Size 1 5 15 40 100

Mission Critical Speculative Small user base Established market Mission Critical with
large user base

Safety Critical with
significant
exposure

Team Location Same Room Same Building Within Driving Dist Same Time Zone
+/-2

Multi-site, World
Wide

Team Capacity Established Team of
experts

New team of
experts

Mixed team of
experts and

novices

Team with limited
experience and a

few experts

New team of
mostly novices

Domain knowledge
gaps

Developers know
the domain as well

as expert users

Developers know
the domain fairly

well

Developers require
some domain

assistance

Developers have
exposure to the

domain

Developers have
no idea about the

domain

Dependencies No dependencies Limited and/or well
insulated Moderate Significant

dependencies

Tight Integration
with several

projects

The uncertainty of a project is dependent upon market
conditions and upon the choices the development team
chooses to make. We consider the following attributes to
be the primary indicators of the project uncertainty:

• Market Uncertainty
• Technical Uncertainty
• Project Duration
• Dependents/ Scope Flexibility

5.1. Market Uncertainty
If the market need is well known then the project is
unlikely to need significant steering. Conversely, if the
market needs are not well understood, then it will be
critical to be able to steer the project to the desired goal
rather than the initially stated objective. This attribute is
similar to the requirements change attribute utilized by
Boehm and Turner.

5.2. Technical Uncertainty
Mature products utilizing proven technology do not have
much technical uncertainty, although sometimes we have
experienced uncertainty with new domain technologies
added to an existing product. On the other hand it is
common on new products to want to utilize the latest
technology and these projects will have a high degree of
technical uncertainty.

5.3. Project Duration
The longer the project is scheduled to go prior to its
release, the more chance there is for the technical or
market uncertainty to have an impact on the project.

5.4. Dependents/ Scope Flexibility
The degree to which other projects are dependent upon
this project can limit the amount of steering that can be
tolerated by the other projects. It is not acceptable to be
continually modifying interfaces when those changes
have ripple effects on a number of other projects.

6. Quadrant Assessment
Based on the values for the project, we calculate the
overall Project Complexity and the Uncertainty as
follows:

∑= ixComplexity 10log2

∑= iytyUncertain 10log2
where xi and yi are the individual complexity and
uncertainty attribute scores. In effect, the log x terms are
scaled information measures.6
The choice of equation is equivalent to rescaling each
attribute between 1 and 2 and then computing the
product. We chose this approach because it made sense
and seemed to give good results when values of
Complexity and Uncertainty are cross plotted. The results
for our portfolio are plotted in Figure 1. We found that
the projects in a given quadrant were quite similar and
that the successful approaches used for managing the
projects were also similar. The properties of these
quadrants are described below, and summarized in Figure
2.

Table 2: Uncertainty Attributes, with range from low (left) to high uncertainty (right)

Attribute 1 3 5 7 10

Market Uncertainty
Known deliverable,

possibly defined
contractual obligation

Minor changes in
market target

expected

Initial guess of
market target is
likely to require

steering

Significant market
uncertainty

New market that is
unknown and

untested

Technical
Uncertainty

Enhancements to
existing architecture

We think we know
how to build it

We're not quite
sure if we know
how to build it

Some "r"
New technology,
new architecture.
May be some "R"

Project Duration 1-4 week 6 months 12 months 18 months 24 months

Dependents/ Scope
Flexibility

Well defined
contractual obligations

or Infrastructure

Scope is not very
flexible.

Scope has some
flexibility

Scope is highly
flexible Independent

RAPID Quadrant Assessment

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Project Complexity

U
nc

er
ta

in
ty

Figure 1. Project complexity versus project uncertainty for projects from 3 divisions.

6.1. Dogs – Simple projects with low uncertainty
Dogs are typically mature products being developed by
small teams. With these types of projects which are not
particularly complex and do not have much uncertainty,
the best thing to do is to let the development teams do
their job to ship the products. There are also projects in
this quadrant that have some uncertainty, but the duration
is kept very short to limit the impact of the uncertainty.
Prototype or skunk-works projects often fit into this
category. For both dogs and skunks we find that
additional process ceremony and documentation is
unnecessary and inefficient, thus we run these projects
using only the minimal core set of practices that we use
for all projects in all quadrants. These projects are run
similar to Cockburn’s Crystal Clear. For our portfolio this
quadrant contains approximately 60% of the projects.

6.2. Colts – Simple projects with high uncertainty
New products will usually have both market and technical
uncertainty. If teams are kept small then they can react
quickly to adapt to the uncertainty. The metaphor of the
young colt aptly describes these projects. They are just
getting started and have a lot of energy and freedom.
Most of our project teams that have had success with
Extreme Programming (XP)7 fit into this quadrant. We

have also found that daily standup Scrums8 are effective
in this quadrant. Approximately 20% of our projects are
colts.

6.3. Cows– Complex projects with low
uncertainty
The mature products and product suites that continue to
have large project teams are usually the cash cows of the
organization. In addition to the obvious similarity to cash
cow, the cow is a good metaphor for these projects as
they are quite large but do not move particularly fast.
These projects have less need for agile steering, and often
may actually have need for disciplined change control in
order to reduce the impact when there are many
dependent projects or customers. Projects in this quadrant
may still be agile, but require defined and published
interfaces for the dependent projects. They also require
more direct project and program management, looking at
issues such as critical path and cross team
communication. Many of our cows are integration
projects involving a number of projects, typically dogs.
We have utilized a team of team leaders, something quite
similar to a “Scrum of Scrums,”8 to manage many of
these projects. Cows comprise about 10% of our projects.

RAPID Quadrant Assessment

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Project Complexity

Un
ce

rta
in

ty

Simple, young projects.
Need agility
Tight Teams

Skunks

Dogs

Complex, mature market
Need defined interfaces

Cows

Bulls

Agility to handle uncertainty
Process definition to cope with
complexity

laissez faire

Colts

Figure 2: RAPID Quadrant Assessment

6.4. Bulls–Complex projects with high
uncertainty
Projects that are highly complex and have high
uncertainty create problems on all fronts. They need to be
quite agile in order to steer through the uncertainty, yet
they require some process ceremony in order to manage
the project complexity.
The metaphor of the bull is quite appropriate. These
projects are large and can get out of control quickly if not
careful. They have high visibility throughout the
organization, as they are often new products that have
strong investment. In our case many have been next
generation products intending to supplant existing cash
cows. Expectations are high, yet uncertainty and
complexity are equally high. These projects require much
of the same process ceremony as the cows, yet must be
structured in a manner that enables agile steering.
Iterations must be more frequent and communication
channels must be very efficient. We have found that these
projects require the best program managers that can work
with agility and cut through complexity. In our portfolio
approximately 10% of our projects are bulls.

7. Core RAPID Process
The quadrant assessment is a key early work product of
the RAPID process. We have constructed the overall
RAPID framework to incorporate Core processes that all
projects follow and then utilize the project assessment to

determine which other process activities should be
utilized. The core processes include:

• Aggregate Product Plan
• A/B/C List
• Quality Agreement
• Continuous Integration
• Expert User Involvement
• Project Dashboard

7.1. Aggregate Product Plan
This is a very concise statement of the project objectives
produced by the Product Manager. It contains the
following information for this release:

• Target date
• One sentence product vision
• High level list of “A” priority features

committed (see below)
• Short description of the strategic fit
• List of the target markets that will be pursued
• Supported platforms

7.2. A/B/C List
Desired features are categorized into 3 priorities, which
we conveniently name A, B, and C. The team estimates
effort requirements and works with the Product
Manager’s estimate of value to maximize return on
investment. Only “A” features may be communicated to

customers. The following is our definitions for our A/B/C
items:

A. MUST be completed in order to ship the
product.

B. SHOULD be completed in order to ship the
product.

C. MAY be completed prior to shipping the product
if time allows.

Since we are contracting to deliver all the “A” items, we
allow for uncertainty by limiting the schedule to no more
than 50% “A” features. Over the course of the project as
“A” items are completed we utilize any remaining
schedule to complete the “B” or “C” items. It is common
to reprioritize during the project, particularly at iterations,
although “A” items are usually not dropped unless proper
customer expectations have been set. This approach and
how it is used to maximize value delivery is described
further in a recent article by Little9.

7.3. Quality Agreement
The team works with the Product Manager to reach
agreement on quality targets for the release. We have
modified Rob Thomsett’s10 quality agreement approach to
utilize the A/B/C prioritization. We feel that this gives us
consistency in our discussions and also provides a bit
more granularity than Thomsett’s On/Off approach.

7.4. Continuous Integration
For all our projects we utilize configuration management
and build at least nightly. A number of projects have
started utilizing a continuous build process. Most of the
projects using continuous builds started as colts, but some
of these are now bulls or cows and still find the use of
continuous builds to be beneficial.

7.5. Expert User Involvement
We have always found it critical to have expert users
involved in the development. Most of our complex
projects have a dedicated expert user, usually someone
that has been a former customer. Nearly all of our testers
are also expert users, and many of the developers are
expert users themselves.

7.6. Project Dashboard
We developed a web based interface for reporting
common information about the project status. This
information is recorded at least weekly by the project
managers and provides an excellent portfolio dashboard
to view project health. Information that is available
includes the aggregate product plan, quality metrics, top
active risks, any revisions to the release estimate, etc.

8. Adaptive Processes
Additional processes and practices are added to the Core
set based on the project attributes. The project quadrant
provides guidance for the types of processes and practices
to be added.

8.1. Dogs and Skunks
These projects do not require any additional process
guidelines beyond the core processes. Teams are free to
do what they need to in order to ship product. As Alistair
Cockburn has referred to Crystal Clear11, these projects
take a laissez-faire approach to software development.

8.2. Colts
These high uncertainty projects benefit from a number of
additional project practices that help cope with the
uncertainty:

• Short iterations
• Daily standup meetings
• Automated unit tests

8.3. Cows
Although they do not have much uncertainty, these
projects require additional processes to deal with the
complexity. Such activities include:

• More rigorous requirements management; we
use a requirements tool.

• Functional specifications for interface definitions
• Relatively detailed project plans with critical

path identification
• Projects broken up into sub projects and

coordinated by a team of leaders or a Scrum of
Scrums.

8.4. Bulls
These projects are quite difficult to control as they require
steering to cope with the uncertainty, yet are large and/or
complex. We find that to be run successfully they require
most of the process ceremony of the cows, yet much of
the steering of the colts. Most importantly they require the
most seasoned project managers that are able to
understand how to balance this dichotomy. We expect
that most organizations have only a few project managers
with the requisite capacity to manage these projects. As
such it is unwise for an organization to have more bull
projects than bull project managers.

9. Adjusting Project Constraints
We have had teams discover during the quadrant
assessment that their project was either more complex or
uncertain than they had thought. There are adjustments

that sometimes can be made to the project in order to
reduce either complexity or uncertainty. In particular, we
have often found it useful to decompose larger projects
into subprojects in order to reduce complexity.

10. Conclusion
At Landmark we strive to deliver our software in a
manner that will maximize the delivery of business value.
We believe that agile development approaches are aligned
with this philosophy.
Within any organization there will be a distribution of
project types, a distribution of people and a distribution of
opinions about the right way to do things. Our experience
has been that there is no single software development
process that is the best approach for every project. It is
important to look at the project and team conditions to
determine how best to run the project. We believe that
two of the most critical attributes that impact how to run a
project are complexity and uncertainty.
We developed an assessment tool to provide guidance to
project teams on how to adapt their project process to
manage complexity and to cope with uncertainty. The
scoring model is not intended to be rigorous; however it
has proven to be useful to the project teams and to senior
management. We do not recommend blindly using the
assessment tool; the identification of the complexity and
uncertainty attributes is intended to simulate thought, not
to eliminate it.
The assessment has also provided an insight into our
project portfolio management. Our overall portfolio of
projects is distributed across the four quadrants. Fewer
than 10% of our projects are classified as bulls, These
projects are difficult to run and an organization with a
high percentage of bulls is taking on significant risk.
Likewise, only about 10% or projects are cows and about
20% are colts. Most of our projects are in the dog
quadrant. Dogs can be loyal and rewarding. Provide them
reasonable care and feeding and they will provide good
results in return.

11. Acknowledgements:
The experience of the many Landmark development
teams provided fodder for this analysis. Thanks also to
Rebecca Wirfs-Brock of Wirfs-Brock Associates for
providing valuable guidance in shepherding this paper.

12. References
1. Cockburn, Alistair, Agile Software Development,

Addison Wesley, 2001.
2. Highsmith, Jim, Adaptive Software

Development: A Collaborative Approach to
Managing Complex Systems, Dorset House,
2000.

3. Microsoft Solutions Framework,
http://www.microsoft.com/msf/

4. Cusumano, Michael A. and Selby, Richard W.,
Microsoft Secrets: How The World's Most
Powerful Software Company Creates
Technology, Shapes Markets, And Manages
People, Simon & Schuster, 1998.

5. Boehm, Barry and Turner, Richard, Balancing
Agility and Discipline: A Guide for the
Perplexed, Addison-Wesley, 2003.

6. Shannon, C. E., ``A mathematical theory of
communication,'' Bell System Technical Journal,
vol. 27, pp. 379-423 and 623-656, July and
October, 1948.

7. Beck, Kent, Extreme Programming Explained:
Embrace Change, Addison Wesley, 1999.

8. Schwaber, Ken & Beedle, Mike, Agile Software
Development with SCRUM, Prentice Hall, 2001.

9. Little, Todd, “Value Creation and Capture: A
Model of the Software Development Process,”
IEEE Software, Vol. 21, No. 2, 2004.

10. Thomsett, Rob, Radical Project Management,
Prentice Hall, 2002.

11. Cockburn, Alistair, Crystal Clear, Addison
Wesley, 2004

	Introduction
	Company Background
	Landmark’s Development Process
	Complexity Drivers
	Team Size
	Mission/Safety Critical
	Team Location
	Team Capacity
	Domain knowledge gaps
	Dependencies

	Uncertainty Drivers
	Market Uncertainty
	Technical Uncertainty
	Project Duration
	Dependents/ Scope Flexibility

	Quadrant Assessment
	Dogs – Simple projects with low uncertainty
	Colts – Simple projects with high uncertainty
	Cows– Complex projects with low uncertainty
	Bulls–Complex projects with high uncertainty

	Core RAPID Process
	Aggregate Product Plan
	A/B/C List
	Quality Agreement
	Continuous Integration
	Expert User Involvement
	Project Dashboard

	Adaptive Processes
	Dogs and Skunks
	Colts
	Cows
	Bulls

	Adjusting Project Constraints
	Conclusion
	Acknowledgements:
	References

